同余and乘法逆元学习笔记】的更多相关文章

目录 数学符号 快速幂 方法一 方法二 同余 概念 同余的性质 乘法逆元 概念: 求逆元的方法 扩展欧几里得 快速幂法\(o(n*log(n))\) 递推法\(o(n)\) sjp大佬让我写同余那就只能硬着头皮按学长的ppt来写了,咕咕咕 数学符号 不想一个一个打了,凑合着看吧 快速幂 输入b,p,k的值,求b^p mod k的值. 方法一 直接反复平方,复杂度是\(O(n)\)基本没戏会TLE的,不用看了 方法二 如果\(a\)自己乘一次就变成了\(a^2\),\(a^2\)再自乘一次就变成了…
一.控制台实现乘法表 package com.shanrengo; import java.io.IOException; import java.io.PrintWriter; import javax.servlet.ServletException; import javax.servlet.http.HttpServlet; import javax.servlet.http.HttpServletRequest; import javax.servlet.http.HttpServle…
A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 10383    Accepted Submission(s): 8302 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1).   Input 数据的第一行是…
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法     一般应用最广泛的表示方式     用A(x)表示一个x-1次多项式,a[i]为$ x^i$的系数,则A(x)=$ \sum_0^{n-1}$ a[i] * $ x^i$ 仅利用这种方式求多项式乘法复杂度为O($ n^2$),不够优秀2.点值表示法     将n个互不相同的值$ x_0$...$…
Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequenc…
大整数,顾名思义就是特别大的整数. 一台64位的机器最大能表示的数字是2的64次方减一: 18446744073709551615 java语言中所能表示的整数(int)最小为-2147483648 public class test { public static void main(String[] args) { System.out.println(Integer.MIN_VALUE); } } 最大为 2147483647 public class test { public stat…
初等数论学习笔记 I:同余相关. 初等数论学习笔记 II:分解质因数. 1. 数论函数 本篇笔记所有内容均与数论函数相关.因此充分了解各种数论函数的名称,定义,符号和性质是必要的. 1.1 相关定义 数论函数:定义域为正整数的函数称为 数论函数.因其在所有正整数处均有定义,故可视作数列.OI 中常见的数论函数的陪域(即可能的取值范围)为整数. 加性函数:若对于任意 \(a, b\in \mathbb{N}_+\) 且 \(a\perp b\) 均有 \(f(ab) = f(a) + f(b)\)…
逆元 准确地说,这里讲的是模意义下的乘法逆元. 定义:如果有同余方程 \(ax\equiv 1\pmod p\),则 \(x\) 称为 \(a\bmod p\) 的逆元,记作 \(a^{-1}\). 作用是抵消乘法,即 \(x\cdot a\cdot a^{-1}\equiv x\pmod p\) 进一步可以得到 \(\frac xa\equiv x\times a^{-1}\pmod p\),这也是分数取模的计算方式 最通用的求法是 exgcd . \(ax\equiv 1\pmod p\)…
基本上只是整理了一下框架,具体的学习给出了个人认为比较好的博客的链接. PART1 数论部分 最大公约数 对于正整数x,y,最大的能同时整除它们的数称为最大公约数 常用的:\(lcm(x,y)=xy\gcd(x,y)\) 裴蜀定理 定理:对于方程\(ax+by=c\),其存在解的充要条件是\(gcd(a,b)|c\),可以拓展到n元的方程. 证明的话应该自己yy一下还是很容易(显然可得),不过要是想要严谨证明还是去百度吧qwq 扩展欧几里得定理 首先我们都知道\(gcd(a,b)=gcd(b,a…
目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NTT\) 在某种意义上说,应该属于 \(FFT\) 的一种优化. --因而必备知识肯定要有 \(FFT\) 啦... 如果不知道 \(FFT\) 的大佬可以走这里 引入 在 \(FFT\) 中,为了能计算单位原根 \(\omega\) ,我们使用了 \(\text{C++}\) 的 math 库中的…