【Spark】----Spark on Yarn】的更多相关文章

在YARN上运行Spark 在Spark0.6.0版本开始支持YARN模式,随后的版本在逐渐地完善. 在YARN上启动Spark 确保HADOOP_CONF_DIR或YARN_CONF_DIR属性的值已经指向了Hadoop集群的配置文件.Spark通常使用这些配置信息来向HDFS写入数据和连接到YARN资源管理器.这个目录下所有的文件将会被分发到YARN集群中,所以所有应用使用的容器都使用同样的配置.如果Java的系统属性或YARN没有管理的环境变量等配置,它们应该在Spark 的应用配置项中配…
本文转自 http://www.cnblogs.com/Scott007/p/3889959.html 1 概述 Spark的on Yarn模式,其资源分配是交给Yarn的ResourceManager来进行管理的,但是目前的Spark版本,Application日志的查看,只能通过Yarn的yarn logs命令实现. 在部署和运行Spark Application的过程中,如果不注意一些小的细节,也许会导致一些问题的出现. 2 防火墙 部署好Spark的包和配置文件,on yarn的两种模式…
原文地址:http://tech.uc.cn/?p=2116 概述 什么是Spark Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点:但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法.其架构如下图所…
前言 上文已经介绍了与Spark 息息相关的MapReduce计算模型,那么相对的Spark的优势在哪,有哪些适合大数据的生态呢? Spark对比MapReduce,Hive引擎,Storm流式计算引擎 1.如果数据超过1T了基本就不能用spark了,还是会选择MapReduce,MapReduce利用磁盘的高I/O操作实现并行计算确实在处理海量数据是无法取代的,但它在迭代计算中性能不足.(如果数据过大,OOM内存溢出等等,spark的程序就无法运行了,直接就会报错挂掉了,这个很坑爹是吧,虽然M…
Spark考前概念相关题复习 AUthor:萌狼蓝天 哔哩哔哩:萌狼蓝天 博客园:我的文章 - 萌狼蓝天 博客:萌狼工作室 - 萌狼蓝天 (mllt.cc) 选择题 Hadoop 1.HADOOP的三大核心组件 HDFS分布式文件系统 YARN作业调度 和 集群资源管理的框架 MAPREDUCE 分布式运算编程框架 2.hadoop完全分布式集群主节点上的角色有 NameNode ResourceManager SecondaryNameNode7 3.hadoop的集群包括HDFS.YARN…
[From]https://blog.csdn.net/u013332124/article/details/88350345 Spark History Server 是spark内置的一个http服务,通过sbin/sbin/start-history-server.sh启动.History Server启动后,会监听一个端口,同时启动两个定时任务线程,分别用来解析eventLog日志文件和清理过期的eventLog日志文件.Spark History Server启动后,我们可以直接在浏览…
文章目录 准备知识 DAG 概述 shuffle 概述 SortShuffleManager 普通机制 bypass机制 Spark任务调度 流程 准备知识 要弄清楚Spark的任务调度流程,就必须要清楚RDD.Lineage.DAG和shuffle的相关知识,关于RDD和Lineage,我的这两天文章已经有过相关介绍,感兴趣可以去看一看 [Spark]RDD(Resilient Distributed Dataset)究竟是什么? [Spark]RDD的依赖关系和缓存相关知识点接下来说一下DA…
原文地址:http://jerryshao.me/architecture/2013/04/21/Spark%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%E4%B9%8B-scheduler%E6%A8%A1%E5%9D%97/ Background Spark在资源管理和调度方式上采用了类似于Hadoop YARN的方式,最上层是资源调度器,它负责分配资源和调度注册到Spark中的所有应用,Spark选用Mesos或是YARN等作为其资源调度框架.在每一个应用内部,…
原文地址:http://jerryshao.me/architecture/2013/04/30/Spark%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%E4%B9%8B-deploy%E6%A8%A1%E5%9D%97/ Background 在前文Spark源码分析之-scheduler模块中提到了Spark在资源管理和调度上采用了Hadoop YARN的方式:外层的资源管理器和应用内的任务调度器:并且分析了Spark应用内的任务调度模块.本文就Spark的外层资…
要学习分布式以及数据分析.机器学习之类的,觉得可以通过一些实际的编码项目入手.最近Spark很火,也有不少招聘需要Spark,而且与传统的Hadoop相比,Spark貌似有一些优势.所以就以Spark来学习下. 安装部署等可以参考之前的文章:http://www.cnblogs.com/charlesblc/p/6014158.html 貌似主从Spark都部署在了 m42n05 机器上.看后续是否需要增加其他slave. 首先看了知乎这篇文章,了解了一些基础(link) 在2010年开源,目前…