from:https://www.douban.com/note/284051363/?type=like 原帖发表在我的博客:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见[这里](http://bubblexc.com/y2011/148/).这篇博文…
转自:https://www.douban.com/note/284051363/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见[这里](http://bubblexc.com/y2011/148/).这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC. # ROC曲线需要提前说明的是,我们这里只讨论二值分类器.对于分类器…
原文:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ 为什么使用ROC曲线 既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因为ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变.在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化.下图是ROC曲线和Precision-Recall…
https://blog.csdn.net/u014313009/article/details/38944687 SIGIR的一篇推荐算法论文中提到用NDCG和AUC作为比较效果的指标,之前没了解过这两个指标,便查找相关概念,整理如下. 一.NDCG1.DCG       首先,介绍一下DCG.DCG的全称是Discounted Cumulative Gain,它是衡量搜索引擎算法的一个指标.搜索引擎一般采用PI(per item)的方式进行评测,即逐条对搜索结果进行等级的打分.比如在Goog…
https://www.jianshu.com/p/f154237924c4 (ROC讲解) https://blog.csdn.net/saltriver/article/details/74012163 (F-score 的讲解) https://www.jianshu.com/p/b20347b95919(ROC ,AUC更详细讲解)…
from:http://kubicode.me/2016/09/19/Machine%20Learning/AUC-Calculation-by-Python/ AUC介绍 AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,其计算原理可以参考这个ROC和AUC介绍以及如何计算AUC,但是有时候模型是单独的或者自己编写的,此时想要评…
要弄明白ks值和auc值的关系首先要弄懂roc曲线和ks曲线是怎么画出来的.其实从某个角度上来讲ROC曲线和KS曲线是一回事,只是横纵坐标的取法不同而已.拿逻辑回归举例,模型训练完成之后每个样本都会得到一个类概率值(注意是类似的类),把样本按这个类概率值排序后分成10等份,每一份单独计算它的真正率和假正率,然后计算累计概率值,用真正率和假正率的累计做为坐标画出来的就是ROC曲线,用10等分做为横坐标,用真正率和假正率的累计值分别做为纵坐标就得到两个曲线,这就是KS曲线.AUC值就是ROC曲线下放…
ROC和AUC介绍以及如何计算AUC from:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里.这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC. ROC曲线 需要提前说明的是,我们这里只讨论二值分类器.对…
缘由 以下博客都是我在学习过程中看到的一些知识讲解非常好的博文,就不转载了,直接给出链接方便以后重复访问.有了自己的理解之后再重新整理资料发布吧 : ) sklearn系列 http://www.cnblogs.com/jasonfreak/tag/sklearn/ ROC和AUC介绍以及如何计算AUC http://alexkong.net/2013/06/introduction-to-auc-and-roc/ 机器学习中正则化项L1和L2的直观理解 http://blog.csdn.net…
Movielens and Netflix remain the most-used datasets. Other datasets such as Amazon, Yelp and CiteUlike are also frequently adopted. As for evaluation metrics, Root Mean Square Error (RMSE) and Mean Average Error (MAE) are usually used for rating pred…