1 LMS 学习规则 1.1 LMS学习规则定义 MSE=(1/Q)*Σe2k=(1/Q)*Σ(tk-ak)2,k=1,2,...,Q 式中:Q是训练样本:t(k)是神经元的期望输出:a(k)是神经元的实际输出. 线性神经网络的目标是寻找最适合的权值W,使得均方差MSE最小,只要对MSE求ω得偏导数,然后让偏导数等于0,那么就可以计算出MSE的极值. for example: 原始输入:X1=[0 0]T.t1=0,X2=[1 0]T.t2=0,X3=[0 1]T.t3=0,X4=[1 1]T.…
2019-04-08 16:59:23 1 学习规则(Learning Rule) 1.1 赫布学习规则(Hebb Learning Rule) 1949年,Hebb提出了关于神经网络学习机理的“突触修正”的假设:当神经元的前膜电位.后膜电位同时为正时,突触传导加强:电位相反时,突触传导减弱.根据次假设定义权值ω的调整方法,称该方法为Hebb学习规则. Hebb学习规则中,学习信号等于神经元的输出: r=f(WTj*X) 权值向量W调整公式: ΔW=η*f(WTj*X)*X 权值向量W的分向量Δ…
1 LMS 学习规则_解方程组 1.1 LMS学习规则举例 X1=[0 0 1]T,t1=0:X2=[1 0 1]T,t2=0:X3=[0 1 1]T,t3=0:X1=[1 1 1]T,t1=1. 设权值分别为ω1,ω2,ω3. 将输入和权值组合得方程组: ω1*0+ω2*0+ω3*1=0: ω1*1+ω2*0+ω3*1=0: ω1*0+ω2*1+ω3*1=0: ω1*1+ω2*1+ω3*1=0. 可将该线性方程组写成矩阵的形式: [0 0 1;1 0 1;0 1 1;1 1 1]  * [ω1…
单层感知机 单层感知机基础总结很详细的博客 关于单层感知机的视频 最终y=t,说明经过训练预测值和真实值一致.下面图是sign函数 根据感知机规则实现的上述题目的代码 import numpy as np import matplotlib.pyplot as plt #输入数据 X = np.array([[,,], [,,], [,,], [,,]]) #标签 Y = np.array([[], [], [-], [-]]) #权值初始化,3行1列,取值范围-1到1 W = (np.rand…
技术背景 在前面的几篇博客中,我们分别介绍了MindSpore的CPU版本在Docker下的安装与配置方案.MindSpore的线性函数拟合以及MindSpore后来新推出的GPU版本的Docker编程环境解决方案.这里我们在线性拟合的基础上,再介绍一下MindSpore中使用线性神经网络来拟合多变量非线性函数的解决方案. 环境配置 在按照这篇博客中的方法进行安装和配置之后,可以在本地的docker镜像仓库中找到一个mindspore的镜像: [dechin-manjaro gitlab]# d…
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super(LeNet,self).__init__() self.conv1 = nn.Conv2d(3, 6, 5)…
自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络. 相对于感知器, 采用了f(z)=z的激活函数,属于连续函数. 代价函数为LMS函数,最小均方算法,Least mean square. 实现上,采用随机梯度下降,由于更新的随机性,运行多次结果是不同的. ''' Adaline classifier created on 2019.9.14 author: vince ''' import pandas import math import numpy…
作者:李瞬生链接:https://www.zhihu.com/question/44328472/answer/128973724来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. BP Neural Network - 使用 Automatic Differentiation (Backpropagation) 进行导数计算的层级图模型 (layer-by-layer graphical model) 只要模型是一层一层的,并使用AD/BP算法,就能称作 BP Ne…
一.神经元 神经元模型是一个包含输入,输出与计算功能的模型.(多个输入对应一个输出) 一个神经网络的训练算法就是让权重(通常用w表示)的值调整到最佳,以使得整个网络的预测效果最好. 事实上,在神经网络的每个层次中,除了输出层以外,都会含有这样一个偏置单元.这些节点是默认存在的.它本质上是一个只含有存储功能,且存储值永远为1的单元. 输入:x1.x2和截距+1 输出:y 其中的激活函数包括: 逻辑回归函数(S函数): 双曲正切函数(双S函数): 二.神经网络的层次 神经网络中,除了输入层.输出层,…
BZOJ_2460_[BeiJing2011]元素_线性基 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔 法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石. 一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而 使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制 出法杖,这个现象被称为“魔法抵消” .特别地,如果在炼制过程中使用超过 一块同一种矿石,那么一定会发生“魔法抵消”.  …