隐马尔可夫模型(HMM) 学习笔记】的更多相关文章

谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google “I Love Natural Language Processing”估计就能找到)翻译后的HMM入门介绍如下,由于原文分了很多章节,我嫌慢了还是一次性整理,长文慎入吧. 一.介绍(Introduction) 我们通常都习惯寻找一个事物在一段时间里的变化模式(规律).这些模式发生在很多领域,比如计…
在之前的HMM系列中,我们对隐马尔科夫模型HMM的原理以及三个问题的求解方法做了总结.本文我们就从实践的角度用Python的hmmlearn库来学习HMM的使用.关于hmmlearn的更多资料在官方文档有介绍. 1. hmmlearn概述 hmmlearn安装很简单,"pip install hmmlearn"即可完成. hmmlearn实现了三种HMM模型类,按照观测状态是连续状态还是离散状态,可以分为两类.GaussianHMM和GMMHMM是连续观测状态的HMM模型,而Multi…
文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matching 3.3. 3.3. Viterbi算法 4. 4. 相关部分论文工作 4.1. 4.1. A HMM based MM for wheelchair navigation 4.2. 4.2. MM for low-sampling-rate GPS trajectories 4.3. 4.3.…
定义隐马尔科夫模型可以用一个三元组(π,A,B)来定义:π 表示初始状态概率的向量A =(aij)(隐藏状态的)转移矩阵 P(Xit|Xj(t-1)) t-1时刻是j而t时刻是i的概率B =(bij)混淆矩阵 P(Yi|Xj) 在某个时刻因隐藏状态为Xj而观察状态为Yi的概率值得注意的是,在状态转移矩阵中的每个概率都是时间无关的,也就是说我们假设这个概率是固定的,不随时间变化.当然,这是马尔科夫模型最不切合实际的一个假设. 隐马尔科夫模型的使用如果一个模型可以被描述成一个隐马尔科夫模型,有三个问…
隐马尔科夫模型HMM(一)HMM模型基础 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 隐马尔科夫模型(Hidden Markov Model,以下简称HMM)是比较经典的机器学习模型了,它在语言识别,自然语言处理,模式识别等领域得到广泛的应用.当然,随着目前深度学习的崛起,尤其是RNN,LSTM等神经网络序列模型的火热,HMM的地位有所下降.但是作为…
http://blog.csdn.net/pipisorry/article/details/50722178 隐马尔可夫模型 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程,是在被建模的系统被认为是一个马尔可夫过程与未观测到的(隐藏的)的状态的统计马尔可夫模型. 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的.这样状态的转换概率便是全部的参数.[马尔科夫模型HMM概述] 而在隐马尔可夫模型中,状态并不是直接可见的…
隐马尔可夫模型HMM与维特比Veterbi算法(二) 主要内容: 前向算法(Forward Algorithm) 穷举搜索( Exhaustive search for solution) 使用递归降低问题复杂度 前向算法的定义 程序实现前向算法 举例说明前向算法 一.前向算法(Forward Algorithm) 目标:计算观察序列的概率(Finding the probability of an observed sequence) 1. 穷举搜索( Exhaustive search fo…
隐马尔可夫模型HMM与维特比Veterbi算法(一) 主要内容: 1.一个简单的例子 2.生成模式(Generating Patterns) 3.隐藏模式(Hidden Patterns) 4.隐马尔可夫模型(Hidden Markov Model) 一.一个简单的例子 考虑一个简单的例子,有人试图通过一片海藻推断天气——民间传说告诉我们‘湿透的’海藻意味着潮湿阴雨,而‘干燥的’海藻则意味着阳光灿烂.如果它处于一个中间状态(‘有湿气’),我们就无法确定天气如何.然而,天气的状态并没有受限于海藻的…
隐马尔可夫模型HMM的探究 1 HMM基本概念1.1 定义1.2 观测序列生成过程1.3 HMM的三个问题2 概率计算算法2.1 直接计算算法2.2 前向算法forward algorithm2.3 后向算法2.4 一些概率与期望值的计算3 学习算法3.1 监督学习3.2 非监督学习——Baum-Welch算法3.3 Baum-Welch模型参数估计公式4 预测算法4.1 近似算法4.2 维特比算法Viterbi algorithm 隐马尔可夫模型(hidden Markov model,HMM…
崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首先,本文会介绍声称概率模式的系统,用来预测天气的变化 然后,我们会分析这样一个系统,我们希望预测的状态是隐藏在表象之后的,并不是我们观察到的现象.比如,我们会根据观察到的植物海藻的表象来预测天气的状态变化. 最后,我们会利用已经建立的模型解决一些实际的问题,比如根据一些列海藻的观察记录,分析出这几天的天气…