Python NaN】的更多相关文章

NaN, Not a Number, 非数. 它即不是无穷大, 也不是无穷小, 而是python/numpy/... 觉得无法计算时返回的一个符号(自己的推测, 未考证(TODO)). import numpy as np 无穷大减无穷大会导致NaN a = np.infty print a - a nan print a * a, a * a - a inf nan 无穷大乘以0或无穷小或除以无穷大会导致NaN print a * 0 nan print a * 1/ a nan print…
在使用numpy数组的过程中时常会出现nan或者inf的元素,可能会造成数值计算时的一些错误.这里提供一个numpy库函数的用法,使nan和inf能够最简单地转换成相应的数值. numpy.nan_to_num(x): 使用0代替数组x中的nan元素,使用有限的数字代替inf元素 使用范例: >>>import numpy as np >>> a = np.array([[np.nan,np.inf],\ ... [-np.nan,-np.inf]]) >>…
今天在用写一段求和的代码时候,发现最后返回的是nan的结果,这段循环求和代码依次调用了三个函数,于是依次打印这三个函数的返回值,发现其中一个函数的返回值为nan,原来是因为这段函数里面没有相似的用户,所有返回结果为nan,于是我就想加一个判断条件,当结果为空时,跳过本次循环: if res==nan: continue 本以为加上这一句话就可以了,于是重新运行了一下,oh,shit!!!!结果没有任何变化,以前是nan的还是一样没有跳过.于是我想到了我用到了Python的numpy库,会不会是n…
最近,处理两个矩阵的点除,得到结果后,再作其他的计算,发现有些内置的函数不work:查看得到的数据,发现有很多nan和inf,导致python的基本函数运行不了,这是因为在除的过程中分母出现0的缘故.为了将结果能够被python其他函数处理,尤其numpy库,需要将nan,inf转为python所能识别的类型.这里将nan,inf替换0作为例子. 1. 代码 import numpy as np a = np.array([[np.nan, np.nan, 1, 2], [np.inf, np.…
# 识别python中DataFrame中的nanfor i in pfsj.index: if type(pfsj.loc[i]['WZML']) == float: print('float value is ${}'.format(pfsj.loc[i]['WZML'])) elif type(pfsj.loc[i]['WZML']) == str: print('str value is ${}'.format(pfsj.loc[i]['WZML'])) 结果: # 根据结果可知在Dat…
[数据溢出问题] overflow:溢出 overflow:上溢 underflow:下溢 数据溢出包括上溢和下溢. 上溢可以理解为:你想用一个int类型来保存一个非常非常大的数,而这个超出了int类型所能表示的最大的数的范围. 下溢同理:你要用double来表示一个非常非常小的数,超出它所能表示的最小数时,就会发生数据溢出错误.   [如何避免Python程序下溢问题] 浮点数的下溢一般是由很多很小的数(如很多独立同分布数据的概率相乘)的连乘造成的,连乘后的数值有时候会达到负几十万个指数级.…
想创建或测试正无穷.负无穷或NaN(非数字) 的浮点数 Python 并没有特殊的语法来表示这些特殊的浮点值,但是可以使用float() 来创建它们.比如: >>> a = float('inf') >>> b = float('-inf') >>> c = float('nan') >>> a inf >>> b -inf >>> c nan >>> 为了测试这些值的存在,使用m…
NaN 是 Not a Number 的缩写.它是一个数值类型值,通常在浮点计算中,表示未定义或无法表示的值.而且,不能直接使用相等运算符 (==) 检查 NaN.由于在程序中,nan == nan (C/C++/Python) 或 nan is nan (Python) 总是返回 0 或 False.因此,除了采用库函数外,往往可以利用这个性质检查某个数值是否为 NaN.下面介绍如何采用库函数检查 NaN 值: C/C++ 实现 在 C/C++ 中,采用 math.h 标准函数库中的 isna…
python原生的None和pandas, numpy中的numpy.NaN尽管在功能上都是用来标示空缺数据.但它们的行为在很多场景下确有一些相当大的差异.由于不熟悉这些差异,曾经给我的工作带来过不少麻烦. 特此整理了一份详细的实验,比较None和NaN在不同场景下的差异. 实验的结果有些在意料之内,有些则让我大跌眼镜.希望读者看过此文后会None和NaN这对“小妖精”有更深的理解. 为了理解本文的内容,希望本文的读者需要对pandas的Series使用有一定的经验. 首先,导入所需的库 In[…
Python pandas: check if any value is NaN in DataFrame # 查看每一列是否有NaN: df.isnull().any(axis=0) # 查看每一行是否有NaN: df.isnull().any(axis=1) # 查看所有数据中是否有NaN最快的: df.isnull().values.any() # In [2]: df = pd.DataFrame(np.random.randn(1000,1000)) In [3]: df[df > 0…