算法学习->整数拆分问题】的更多相关文章

动态规划典型题目/ 00 题目 将正整数n无需拆分为最大数为k的拆分方案有多少种?​要求所有的拆分方案不重复. 示例: 输入:n=5,k=5 输出:(5,5)=7 示例分析: 5=5 5=4+1 5=3+2 5=3+1+1 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1 所以一共七种. 01 思路 01-1 类型 求解这一问题的思路有很多,在这里是想作为动态规划的例题进行分析.所以采用动态规划. 01-2 算法 使用动态规划,最重要的是状态转移方程 简单说就是当前状态对下一状态,依据…
算法学习,先熟悉一下C语言哈!!! #include <conio.h> #include<stdio.h> int main(){ printf(+); getch(); ; } 计算1+2的值结果:3 进一步计算加减乘除 #include <conio.h> #include<stdio.h> int main(){ printf(+); printf(-); printf(*); printf(/); printf(/); getch(); ; } 结…
原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组内进行直接插入排序:然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<:…<d2<d1),即所有记录放在同一组中进行直接插入排序为止. 该方法实质上是一种分组插入方法. 算法编码 void shellSort(int v[], int n)…
343. 整数拆分 343. Integer Break 题目描述 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积. 每日一算法2019/5/28Day 25LeetCode343. Integer Break 示例 1: 输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1. 示例 2: 输入: 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36. 说明: 你可以假设 n 不小于…
题目描述:给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化. 返回你可以获得的最大乘积. 题目分析 题目中"n 至少可以拆分为两个正整数的和",这个条件说明了 n 是大于 1 的整数. 对 7 来说,可以拆成 3+4,最大乘积是 12. 对 8 来说,可以拆成 3+3+2,最大乘积是 18. 解法 1: 动态规划 状态数组dp[i]表示:数字 i 拆分为至少两个正整数之和的最大乘积.为了方便计算,dp 的长度是 n + 1,值初始化为 1. 显然dp[2]等于…
DSP算法学习-过采样技术 彭会锋 2015-04-27 23:23:47 参考论文: 1 http://wr.lib.tsinghua.edu.cn/sites/default/files/1207488664463.pdf…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4651 题意:给出n.求其整数拆分的方案数. i64 f[N]; void init(){    f[0]=f[1]=1; f[2]=2;    int i,j,k,t;    for(i=3;i<N;i++) for(j=1;;j++)    {        FOR0(k,2)        {            if(!k) t=(3*j*j-j)/2;            else t=…
Python之路,Day21 - 常用算法学习   本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. 一…
--->题意:给一个函数的定义,F(n)代表n的所有约数之和,并且给出了整数拆分公式以及F(n)的计算方法,对于一个给出的N让我们求1 - N之间有多少个数满足F(x)为偶数的情况,输出这个数. --->分析:来考虑F(x)为奇数的情况,给据题目中给我们的公式,,如果F(x)为奇数,那么这个多项式里面的任何一项都必须是奇数,可以知道p = 2时,        p^e - 1肯定是奇数,如果p != 2,当且仅当e为偶数的时候,此项为奇数,证明如下: 原式变形为[ p^(e+1) -p + (…
分析:题目并不难理解,就是一些细节上的优化需要我们注意,我在没有优化前跑了2000多MS,优化了一些细节后就是400多MS了,之前还TLE了好几次. 方法:将整数拆分为质因子以后,表达为这样的形式,e1*p1 + e2*p2 + .... + en*pn,整数的所有约数的个数为(1+p1)*(1+p2)*(1+pn); 注意:当时我也在担心,题目中要求我们的分解成的两个数不能相等,但是当我们求出约数总数以后直接除了2(因为我们只需要一半),没有特殊处理相等的情况,会不会出错? 其实不会,我们这个…