构造一张有向图$G=([1,n],\{(a_{i},b_{i})\})$(可以有重边和自环),定义其连通块为将其看作无向图(即边无向)后分为若干个连通块 记$in_{i}$为$i$的入度(即最终盒子中球的数量).$out_{i}$为$i$的出度(即初始盒子中球的数量),对于$in_{i}=0$的点,若$out_{i}>0$则一定无解(因为不可能使一个盒子变空),否则$in_{i}=out_{i}=0$,可以直接删除 在此基础上,考虑当$c_{i}=1$的情况,结论:无解当且仅当这张图中存在一个连…