自然语言推理:微调BERT Natural Language Inference: Fine-Tuning BERT SNLI数据集上的自然语言推理任务设计了一个基于注意力的体系结构.现在通过微调BERT来重新讨论这个任务.自然语言推理是一个序列级文本对分类问题,而微调BERT只需要额外的基于MLP的架构,如图1所示. Fig. 1. This section feeds pretrained BERT to an MLP-based architecture for natural lang…
WSDM(Web Search and Data Mining,读音为Wisdom)是业界公认的高质量学术会议,注重前沿技术在工业界的落地应用,与SIGIR一起被称为信息检索领域的Top2. 刚刚在墨尔本结束的第12届WSDM大会传来一个好消息,由美团搜索与NLP部NLP中心的刘帅朋.刘硕和任磊三位同学组成的Travel团队,在WSDM Cup 2019大赛 “真假新闻甄别任务” 中获得了第二名的好成绩.队长刘帅朋受邀于2月15日代表团队在会上作口头技术报告,向全球同行展示了来自美团点评的解决方…
微调BERT:序列级和令牌级应用程序 Fine-Tuning BERT for Sequence-Level and Token-Level Applications 为自然语言处理应用程序设计了不同的模型,例如基于RNNs.CNNs.attention和MLPs.当存在空间或时间限制时,这些模型是有用的,然而,为每个自然语言处理任务构建一个特定的模型实际上是不可行的.介绍了一个预训练模型,BERT,要求对各种自然语言处理任务进行最小的体系结构更改.一方面,在提出这个建议的时候,BERT改进了各…
用NVIDIA-NGC对BERT进行训练和微调 Training and Fine-tuning BERT Using NVIDIA NGC 想象一下一个比人类更能理解语言的人工智能程序.想象一下为定制的域或应用程序构建自己的Siri或Google搜索. Google BERT(来自Transformers的双向编码器表示)为自然语言处理(NLP)领域提供了一个改变游戏规则的转折点. BERT运行在NVIDIA GPUs驱动的超级计算机上,训练其庞大的神经网络,达到前所未有的NLP精度,冲击了已…