自然语言推理:微调BERT】的更多相关文章

自然语言推理:微调BERT Natural Language Inference: Fine-Tuning BERT SNLI数据集上的自然语言推理任务设计了一个基于注意力的体系结构.现在通过微调BERT来重新讨论这个任务.自然语言推理是一个序列级文本对分类问题,而微调BERT只需要额外的基于MLP的架构,如图1所示. Fig. 1.  This section feeds pretrained BERT to an MLP-based architecture for natural lang…
我的机器学习教程「美团」算法工程师带你入门机器学习   已经开始更新了,欢迎大家订阅~ 任何关于算法.编程.AI行业知识或博客内容的问题,可以随时扫码关注公众号「图灵的猫」,加入”学习小组“,沙雕博主在线答疑~此外,公众号内还有更多AI.算法.编程和大数据知识分享,以及免费的SSR节点和学习资料.其他平台(知乎/B站)也是同名「图灵的猫」,不要迷路哦 ​ ​ ​ ​ BERT模型代码已经发布,可以在我的github: NLP-BERT--Python3.6-pytorch 中下载,请记得star…
WSDM(Web Search and Data Mining,读音为Wisdom)是业界公认的高质量学术会议,注重前沿技术在工业界的落地应用,与SIGIR一起被称为信息检索领域的Top2. 刚刚在墨尔本结束的第12届WSDM大会传来一个好消息,由美团搜索与NLP部NLP中心的刘帅朋.刘硕和任磊三位同学组成的Travel团队,在WSDM Cup 2019大赛 “真假新闻甄别任务” 中获得了第二名的好成绩.队长刘帅朋受邀于2月15日代表团队在会上作口头技术报告,向全球同行展示了来自美团点评的解决方…
微调BERT:序列级和令牌级应用程序 Fine-Tuning BERT for Sequence-Level and Token-Level Applications 为自然语言处理应用程序设计了不同的模型,例如基于RNNs.CNNs.attention和MLPs.当存在空间或时间限制时,这些模型是有用的,然而,为每个自然语言处理任务构建一个特定的模型实际上是不可行的.介绍了一个预训练模型,BERT,要求对各种自然语言处理任务进行最小的体系结构更改.一方面,在提出这个建议的时候,BERT改进了各…
解决的问题 自然语言推理,判断a是否可以推理出b.简单讲就是判断2个句子ab是否有相同的含义. 方法 我们的自然语言推理网络由以下部分组成:输入编码(Input Encoding ),局部推理模型(Local Inference Modeling ),和推理合成(inference composition).结构图如下所示: 垂直来看,上图显示了系统的三个主要组成部分:水平来看,左边代表称为ESIM的序列NLI模型,右边代表包含了句法解析信息的树形LSTM网络. 输入编码 # Based on…
http://www.xue63.com/toutiaojy/20180327G0DXP000.html 本文提出一种简单的自然语言推理任务下的神经网络结构,利用注意力机制(Attention Mechanism)将问题分解为可以单独解决的子问题,从而实现了并行化.在斯坦福自然语言推理(SNLI)数据集上,本文工作取得了极好的效果,并且比之前的工作减少了一个数量级的参数数量,而且模型结构不依赖任何单词顺序信息.延伸模型加入了句子内的Attention以考虑一部分单词词序信息,得到更好的提升效果.…
自然语言推理是NLP高级别的任务之一,不过自然语言推理包含的内容比较多,机器阅读,问答系统和对话等本质上都属于自然语言推理.最近在看AllenNLP包的时候,里面有个模块:文本蕴含任务(text entailment),它的任务形式是: 给定一个前提文本(premise),根据这个前提去推断假说文本(hypothesis)与premise的关系,一般分为蕴含关系(entailment)和矛盾关系(contradiction),蕴含关系(entailment)表示从premise中可以推断出hyp…
BERT 课程笔记 1. 传统方案遇到的问题 BERT的核心在于Transformer,Transformer就类似seq2seq网络输入输出之间的网络结构. 传统的RNN网络:最大的问题,因为不能并行计算,所以往往深度不够. 传统的word2vec:同一个词一经训练词向量便确定了下来,缺乏适应不同语境的灵活性. 2. 注意力机制的作用 注意力机制的作用是能够体现句子中的重点词,而不是把所有词都同等看待.类似图右体现的关注热点区域. self-attention举例:两个句子中it的指代是不同的…
用NVIDIA-NGC对BERT进行训练和微调 Training and Fine-tuning BERT Using NVIDIA NGC 想象一下一个比人类更能理解语言的人工智能程序.想象一下为定制的域或应用程序构建自己的Siri或Google搜索. Google BERT(来自Transformers的双向编码器表示)为自然语言处理(NLP)领域提供了一个改变游戏规则的转折点. BERT运行在NVIDIA GPUs驱动的超级计算机上,训练其庞大的神经网络,达到前所未有的NLP精度,冲击了已…
基于TensorRT的BERT实时自然语言理解(下) BERT Inference with TensorRT 请参阅Python脚本bert_inference.py还有详细的Jupyter notebook BERT_TRT.ipynb在sample文件夹中进行推理过程的逐步描述和演练.在本节中,让我们回顾几个关键参数和概念,以便使用TensorRT进行推理. BERT(更具体地说是编码器层)使用以下参数来控制其操作: Batch size Sequence Length Number of…