Consistency Regularization for GANs】的更多相关文章

目录 概 主要内容 Zhang H., Zhang Z., Odena A. and Lee H. CONSISTENCY REGULARIZATION FOR GENERATIVE ADVERSARIAL NETWORKS. ICLR, 2020. Zhao Z., Singh S., Lee H., Zhang Z., Odena A. and Zhang H. Improved Consistency Regularization for GANs. AAAI, 2020. 概 让GAN训…
半监督学习(Semi-Supervised Learning,SSL)的 SOTA 一次次被 Google 刷新,从 MixMatch 开始,到同期的 UDA.ReMixMatch,再到 2020 年的 FixMatch. 目录 Consistency Regularization Entropy Minimization 结合 Consistency Regularization 和 Entropy Minimization FixMatch: Simplifying SSL with Con…
论文从理论的角度出发,对目标检测的域自适应问题进行了深入的研究,基于H-divergence的对抗训练提出了DA Faster R-CNN,从图片级和实例级两种角度进行域对齐,并且加入一致性正则化来学习域不变的RPN.从实验来看,论文的方法十分有效,这是一个很符合实际需求的研究,能解决现实中场景多样,训练数据标注有限的情况.   来源:晓飞的算法工程笔记 公众号 论文: Domain Adaptive Faster R-CNN for Object Detection in the Wild 论…
论文基于DA Faster R-CNN系列提出类别正则化框架,充分利用多标签分类的弱定位能力以及图片级预测和实例级预测的类一致性,从实验结果来看,类该方法能够很好地提升DA Faster R-CNN系列的性能   来源:晓飞的算法工程笔记 公众号 论文: Exploring Categorical Regularization for Domain Adaptive Object Detection 论文地址:https://arxiv.org/pdf/2003.09152.pdf 论文代码:h…
FixMatch 半监督中的基础论文,自监督和模型一致性的代表作. Consistency regularization: 无监督学习的方式,数据\(A\)和经过数据增强的\(A\)计做\(A'\) ,同时输入模型\(f\) ,由于其种类相同(未知但相同),所以\(f(A)=f(A')\) ,利用分布相同进行训练即可. Pseudo-labeling: 伪标签,使用人工标注数据集训练模型\(f\),然后使用此模型去预测未标注数据集,结果使用阈值进行过滤当做未标注数据的标签. 假设存在数据集 \(…
论文阅读: Semi-supervised semantic segmentation needs strong, varied perturbations 作者声明 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 原文链接:凤尘 >>https://www.cnblogs.com/phoenixash/p/15379232.html 基本信息 \1.标题:Semi-supervised semantic segmentation need…
Motivation 虽然半监督学习减少了大量数据标注的成本,但是对计算资源的要求依然很高(无论是在训练中还是超参搜索过程中),因此提出想法:由于计算量主要集中在大量未标注的数据上,能否从未标注的数据中检索出重要的数据(Coreset)呢? Analysis 当前用来半监督学习的方案: 自洽正则化(Consistency Regularization):自洽正则化的思路是,对未标记数据进行数据增广(加入噪声等),产生的新数据输入分类器,预测结果应保持自洽.即同一个数据增广产生的样本,模型预测结果…
GANs and Divergence Minimization 2018-12-22 09:38:27     This blog is copied from: https://colinraffel.com/blog/gans-and-divergence-minimization.html      This post discusses a perspective on GANs which is not new but I think is often overlooked. I'l…
About this Course This course will teach you the "magic" of getting deep learning to work well. Rather than the deep learning process being a black box, you will understand what drives performance, and be able to more systematically get good res…
背景:数据挖掘/机器学习中的术语较多,而且我的知识有限.之前一直疑惑正则这个概念.所以写了篇博文梳理下 摘要: 1.正则化(Regularization) 1.1 正则化的目的 1.2 正则化的L1范数(lasso),L2范数(ridge) 2.归一化 (Normalization)   2.1归一化的目的 2.1归一化计算方法 2.2.spark ml中的归一化 2.3 python中skelearn中的归一化 知识总结: 1.正则化(Regularization) 1.1 正则化的目的:我的…