http://lightoj.com/volume_showproblem.php?problem=1282 Leading and Trailing Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Practice LightOJ 1282 Description You are given two integers: n and k, your task is t…
链接: https://vjudge.net/problem/LightOJ-1282 题意: You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk. 思路: 后三位快速幂取余,考虑前三位. \(n^k\)可以表示为\(a*10^m\)即使用科学计数法. 对两边取对数得到\(k*log…
Leading and Trailing You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk. Input Input starts with an integer T (≤ 1000), denoting the number of test cases. Each case st…
题意:求 n^k 的前三位和后三位. 析:后三位,很简单就是快速幂,然后取模1000,注意要补0不全的话,对于前三位,先取10的对数,然后整数部分就是10000....,不用要,只要小数部分就好,然后取前三位. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #inc…
求n^k的前三位数字和后三位数字. 范围: n (2 ≤ n < 231) and k (1 ≤ k ≤ 107). 前三位: 设 n^k = x ---> lg(n^k)=lg(x) ---> klg(n)=lg(x) ---> x=10^(klgn).   因为求前三位,klgn大于2的整数部分可以舍弃.bit=floor(klgn-2), x=10^(klgn-bit). 后三位:快速幂模1000即可. 代码: #include <iostream> #inclu…
题目大意:求n^k的前三位数 和 后三位数. 题目思路:后三位数直接用快速幂取模就行了,前三位则有些小技巧: 对任意正数都有n=10^T(T可为小数),设T=x+y,则n=10^(x+y)=10^x*10^y,其中10^x为10的整倍数(x为整数确定数位长度),所以主要求出10^y的值. T=log10(n^k)=klog10(n),可以调用fmod函数求其小数部分即y值. #include<iostream> #include<algorithm> #include<cst…
题意:求nk的前三位和后三位. 分析: 1.后三位快速幂取模,注意不足三位补前导零. 补前导零:假如nk为1234005,快速幂取模后,得到的数是5,因此输出要补前导零. 2.前三位: 令n=10a,则nk=10ak=10x+y,x为ak的整数部分,y为ak的小数部分. eg:n=19,k=4,则nk=130321, a=log10(n)=1.2787536009528289615363334757569 ak=5.1150144038113158461453339030277, 因此,x=5,…
1282 - Leading and Trailing You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk. Input Input starts with an integer T (≤ 1000), denoting the number of test cases. Each…
http://lightoj.com/volume_showproblem.php?problem=1282 题目大意: 求n的k次方的前三位和后三位数然后输出 后三位是用快速幂做的,我刚开始还是不会快速幂,后来慢慢理解了. 前三位求得比较厉害 我们可以吧n^k = a.bc * 10.0^m; k*log10(n)  = log10(a.bc) + m; m为k * lg(n)的整数部分,lg(a.bc)为k * lg(n)的小数部分; x = log10(a.bc) = k*log10(n)…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1070 题意: 给你a+b和ab的值,给定一个n,让你求a^n + b^n的值(MOD 2^64). 题解: a + b也就是a^1 + b^1,然后要从这儿一直推到a^n + b^n. 矩阵快速幂?o( ̄▽ ̄)d 那么主要解决的就是如何从a^n + b^n推到a^(n+1) + b^(n+1). 下面是推导过程: 由于推a^(n+1) + b^(n+1)要用到a^n + b^n和a^…
C - Rightmost Digit Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1061 Description Given a positive integer N, you should output the most right digit of N^N. Input The input contains several test case…
题目描述 给出$n$个正整数$a_1,a_2...a_n$和一个质数mod.一个变量$x$初始为$1$.进行$m$次操作.每次在$n$个数中随机选一个$a_i$,然后$x=x\times a_i$.问$m$次操作之后$x$的取值的期望.答案一定可以表示成$\frac{a}{b}$的精确分数形式.$a$和$b$可能很大,所以只需要输出$a\times b^{{10}^9+5}$模${10}^9+7$的结果. 输入格式 第一行三个整数$n,m,mod$.接下来一行$n$个空格隔开的正整数$a_1,a…
zhx's contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 851    Accepted Submission(s): 282 Problem Description As one of the most powerful brushes, zhx is required to give his juniors n p…
https://vjudge.net/contest/70017#problem/E 后半部分快速幂就能求出来,要注意03lld不然001是输出错误为1.前半部分用log10() 对于给定的一个数n,它可以写成10^a,其中这个a为浮点数,则n^k=(10^a)^k=10^a*k=(10^x)*(10^y);其中x,y分别是a*k的整数部分和小数部分,对于t=n^k这个数,它的位数由(10^x)决定,它的位数上的值则有(10^y)决定,因此我们要求t的前三位,只需要将10^y求出,在乘以100,…
链接:传送门 题意:给一个 n ,输出 Fibonacci 数列第 n 项,如果第 n 项的位数 >= 8 位则按照 前4位 + ... + 后4位的格式输出 思路: n < 40时位数不会超过8位,直接打表输出 n >= 40 时,需要解决两个问题 后 4 位可以用矩阵快速幂求出,非常简单 前 4 位的求法借鉴 此博客! balabala:真是涨姿势了-- /****************************************************************…
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_{2n}}{F_{n}}=F_{n-1}+F_{n+1} $,那么我就想到了是不是可以用这个公式实现类似于快速幂之类的东西:power(n,m)=power(n*n,m/2) m mod 2=0 power(n,m)=power(n*n,m/2)*n m mod 2=1 快速幂这个东西,是分成偶数情…
http://lightoj.com/volume_showproblem.php?problem=1282 #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> #include <assert.h> #define IOS ios::sync_with_stdio(false) using name…
http://www.lightoj.com/volume_showproblem.php?problem=1096 题意:\(f(n)  = a * f(n-1) + b * f(n-3) + c, if(n > 2) f(n)= 0, if(n ≤ 2) \) 思路:给出了递推式,构造下4X4矩阵就好. /** @Date : 2016-12-19-18.55 * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://githu…
http://www.lightoj.com/volume_showproblem.php?problem=1065 题意:给出递推式f(0) = a, f(1) = b, f(n) = f(n - 1) +f(n - 2) 求f(n) 思路:给出了递推式就是水题. /** @Date : 2016-12-17-15.54 * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : *…
由二项式定理,(m+1)k=ΣC(k,i)*mi.由此可以构造矩阵转移,将mi*ik全部塞进去即可,系数即为组合数*m.复杂度O(m3logn),因为大常数喜闻乐见的T掉了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; in…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2256 题目大意: 题目要求的是(sqrt(2)+sqrt(3))^2n %1024向下取整的值 解题思路: 这里很多人会直接认为结果等于(an+bn*sqrt(6))%1024,但是这种结果是错的,因为这边涉及到了double,必然会有误差,所以根double有关的取模都是错误的思路 转载于:https://blog.csdn.net/chenguolinblog/article/details/…
LightOJ - 1282 Leading and Trailing 题解 纵有疾风起 题目大意 题意:给你一个数n,让你求这个数的k次方的前三位和最后三位. \(2<=n<2^{31}\),\(1<=k<10^{7}\) 并且\(n^{k}\)至少有6位数 解题思路 这个题目需要解决两个问题 输出\(n^{k}\)的前三位 输出\(n^{k}\)的后三位 输出后三位 这个比较好解决,使用快速幂和模运算就能解决,这里不再详细介绍,看代码就行了. 输出前三位 这个比较麻烦,因为\(…
题目链接:https://vjudge.net/problem/LightOJ-1282 1282 - Leading and Trailing    PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB You are given two integers: n and k, your task is to find the most significant three digits, and le…
题解:求一个数的次幂,然后输出前三位和后三位,后三位注意有前导0的情况. 后三位直接用快速幂取模求解. 前三位求得时候只需要稍微变形一下,可以把乘过的结果拆成用科学计数法,那么小数部分只有由前面决定,所以取前三位利用double来计算就可以了. #include <bits/stdc++.h> using namespace std; typedef long long ll; const int Mod = 1000; ll ppow(ll a, ll k) // 后三位 { ll ans…
题意: 求n的k次方的前三位 和 后三位 ...刚开始用 Java的大数写的...果然超时... 好吧  这题用快速幂取模求后三位  然后用一个技巧求前三位 ...orz... 任何一个数n均可以表示为10a, 其中 a 可以为小数 那么nk 可以表示为10ak  , 令ak == x + y  (其中x为整数 y为小数)  所以 ak - x == y fmod(x,1)可以返回x的小数部分 所以y = fmod(ak,1) /*由于x是整数,那么很明显他是用来指定位数的,因为10x肯定是一个…
题目链接:https://cn.vjudge.net/problem/LightOJ-1282 题意 给出两个正整数n(2 ≤ n < 231), k(1 ≤ k ≤ 1e7) 计算n^k的前三位,末三位 思路 首先末三位很好算,这里就只需模算数+快速幂 然后考虑前三位的算法,这里主要问题是数据溢出(pow(n, k)计算不可行) 那么考虑把n换成浮点数,同时除掉10^m,再去pow(n, k) 我们可以通过$ 1\leq (\frac{n}{10^m})^k \leq 1000 $大概估计范围…
题解:求n^k的前三位和后三位. 后三位直接快速幂对1000去余就可以了.前三位可以转换成浮点数来操作,也是用快速幂,我们只保留答案的前三位,当前值大于1000.0的话就除以10,直到结果小于等于1000.0. #include<bits/stdc++.h> using namespace std; typedef long long ll; ll ksm(ll a,ll b){ ll res=; while(b){ ) res=res*a%; a=a*a%; b>>=; } re…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1213 #include <stdio.h> int cases, caseno; int n, K, MOD; int A[1001]; int main() { scanf("%d", &cases); while( cases-- ) { scanf("%d %d %d", &n, &K, &MOD); i…
2326: [HNOI2011]数学作业 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1564 Solved: 910 [Submit][Status][Discuss] Description Input Output Sample Input Sample Output HINT Source 题解: 矩乘快速幂,构造矩阵: 其中k为位数,所以分段进行快速幂: 1~9:10~99:100~999:-. 开始4A6W,然后加了快速乘AC了,但…
题目 和 LightOj 1096 - nth Term 差不多的题目和解法,这道相对更简单些,万幸,这道比赛时没把模版给抽风坏. #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int num,mod; struct matrix { ][]; }origin,answ; matrix multiply(matrix x,matrix y)//矩阵乘法 { ma…