pytorch基础(1)】的更多相关文章

PyTorch基础 摘抄自<深度学习之Pytorch>. Tensor(张量) PyTorch里面处理的最基本的操作对象就是Tensor,表示的是一个多维矩阵,比如零维矩阵就是一个点,一维就是向量,二维就是一般的矩阵,多维就相当于一个多维数组,这和numpy是对应,而且PyTorch的Tensor可以和numpy的ndarray相互转换,唯一不同的是PyTorch可以在GPU上运行,而numpy的ndarray只能在CPU上运行. 常用的不同数据类型的Tensor有32位浮点型torch.Fl…
DEADLINE: 2020-07-25 22:00 写在最前面: 本课程的主要思路还是要求大家大量练习 pytorch 代码,在写代码的过程中掌握深度学习的各类算法,希望大家能够坚持练习,相信经度过这个酷暑,不知不觉中,你会感觉自己有显著提高.代码教程在 github 上,如遇到图片不显示的情况,可参考博客解决问题:https://blog.csdn.net/qq_38232598/article/details/91346392 目录 1. 视频学习 1.1 绪论 1.2 深度学习概述 1.…
在神经网络训练时,还涉及到一些tricks,如网络权重的初始化方法,优化器种类(权重更新),图片预处理等,继续填坑. 1. 神经网络初始化(Network Initialization ) 1.1 初始化原因 我们构建好网络,开始训练前,不能默认的将所有权重系数都初始化为零,因为所有卷积核的系数都相等时,提取特征就会一样,反向传播时的梯度也会存在对称性,网络会退化会线性模型.另外网络层数较深时,初始化权重过大,会出现梯度爆炸,而过小又会出现梯度消失.一般权重初始化时需要考虑两个问题: (1)权重…
一.介绍 内容 将接触现代 NLP 技术的基础:词向量技术. 第一个是构建一个简单的 N-Gram 语言模型,它可以根据 N 个历史词汇预测下一个单词,从而得到每一个单词的向量表示. 第二个将接触到现代词向量技术常用的模型 Word2Vec.在实验中将以小说<三体>为例,展示了小语料在 Word2Vec 模型中能够取得的效果. 在最后一个将加载已经训练好的一个大规模词向量,并利用这些词向量来做一些简单的运算和测试,以探索词向量中包含的语义信息. 知识点 N-Gram(NPLM) 语言模型 Wo…
一些基础的操作: import torch as th a=th.rand(3,4) #随机数,维度为3,4的tensor b=th.rand(4)print(a)print(b) a+b tensor([[0.3777, 0.4128, 0.6244, 0.7772], [0.0859, 0.9350, 0.1705, 0.9116], [0.4136, 0.1211, 0.5960, 0.8962]]) tensor([0.5063, 0.4809, 0.4810, 0.4716]) ten…
Pytorch 1.0.0 学习笔记: Pytorch 的学习可以参考:Welcome to PyTorch Tutorials Pytorch 是什么? 快速上手 Pytorch! Tensors(张量) from __future__ import print_function import torch 创建一个没有初始化的 \(5\times 3\) 矩阵: x = torch.empty(5, 3) print(x) tensor([[0.0000e+00, 0.0000e+00, 0.…
0.迅速入门:根据上一个博客先安装好,然后终端python进入,import torch ************************************************************ 1.pytorch数据结构 1)初始化方式: eg1: 列表初始化: data = [-1, -2, 1, 2] tensor = torch.FloatTensor(data) # 转换成32位浮点 tensor data = [[1,2], [3,4]] tensor = torch…
目录 1. 前言 # 2. Deep Learning with PyTorch: A 60 Minute Blitz 2.1 base operations 2.2 train a classifier 3 规范化pytorch训练MNIST数据集 1. 前言   最近在学习pytorch,先照着官方的"60分钟教程"学习了一下,然后再github上找了两个star比较多的项目,自己写了一下,学习一下别人的写法. # 2. Deep Learning with PyTorch: A…
一.使用Numpy初始化:[直接对Tensor操作] 对Sequential模型的参数进行修改: import numpy as np import torch from torch import nn # 定义一个 Sequential 模型 net1 = nn.Sequential( nn.Linear(30, 40), nn.ReLU(), nn.Linear(40, 50), nn.ReLU(), nn.Linear(50, 10) ) # 访问第一层的参数 w1 = net1[0].w…
在炼丹师的路上越走越远,开始入手pytorch框架的学习,越炼越熟吧... 1. 张量的创建和操作 创建为初始化矩阵,并初始化 a = torch.empty(, ) #创建一个5*3的未初始化矩阵 nn.init.zeros_(a) #初始化a为0 nn.init.constant_(a, ) # 初始化a为3 nn.init.uniform_(a) #初始化为uniform分布 随机数矩阵 torch.rand(, ) # * , [, )的随机数torch.rand_like(m) #创建…