多柱汉诺塔问题“通解”——c++】的更多相关文章

多柱汉诺塔问题 绪言 有位同学看到了我的初赛模拟卷上有一道关于汉诺塔的数学题.大概就是要求4柱20盘的最小移动次数. 他的数学很不错,找到了应该怎样推. 如果要把n个盘子移到另一个柱子上,步骤如下: 把一部分盘子(靠上的r个)移到一根空柱子上,移动过程中可用的柱子有4根 将剩下的n-r个盘子移到另一根空柱子上,移动过程中可用的柱子为3根(这n-r个盘子都不能放在放有前r个盘子的柱子上) 将第一步移动的r根柱子移到n-r个盘子上方,移动过程中可用的柱子有4根 其实,他说的就是多柱汉诺塔的Frame…
多柱汉诺塔可以用Frame–Stewart算法来解决. The Frame–Stewart algorithm, giving a presumably optimal solution for four (or even more) pegs, is described below: Let be the number of disks. Let be the number of pegs. Define to be the minimum number of moves required t…
递推,汉诺塔I的变形. 这题真心没想到正确解法,越想越迷糊.这题看了别人题解过得,以后还是自己多想想,脚步太快并非好事. 贴上分析:   分析:设F[n]为所求的最小步数,显然,当n=1时,F[n]=1;当n=2时,F[n]=3;如同经典汉诺塔一样,我们将移完盘子的任务分为三步: (1)将x(1<=x<=n)个盘从a柱依靠b,d柱移到c柱,这个过程需要的步数为F[x]; (2)将a柱上剩下的n-x个盘依靠b柱移到d柱(注:此时不能够依靠c柱,因为c柱上的所有盘都比a柱上的盘小)      些时…
Description You all must know the puzzle named "The Towers of Hanoi". The puzzle has three pegs and N discs of different radii, initially all disks are located on the first peg, ordered by their radii - the largest at the bottom, the smallest at…
我想很多人第一次学习递归的时候,老师或者书本上可能会举汉诺塔的例子. 但是今天,我们讨论的重点不是简单的汉诺塔算法,而是三柱汉诺塔的延伸.先来看看经典的三柱汉诺塔. 一.三柱汉诺塔(Hanoi_Three): 我想大家对于三柱汉诺塔的理解以及算法的实现应该是很熟练了. 我在这里简单的过一遍三柱汉诺塔的算法思想: 有A.B.C三根柱子,A柱上有n个盘子,现在需要将A上所有的盘子转移到C上,请给出搬运次数最少的步骤. 算法思想: 1.将A上n-1个盘子以C为缓存,全部转移到 B 柱上. 2.将A上留…
四柱汉诺塔问题的求解程序.解题思路:如a,b,c,d四柱. 要把a柱第n个盘移到目标柱子(d柱),先把上层 分两为两部份,上半部份移到b柱,下半部分移到c柱,再把第n盘移到 目标柱子,然后,c柱盘子再移到目标柱子,再把b柱盘子移到目标柱子. 细节地方: 上半部份移到b柱时,它的中间变量柱子是有二选一的.而下半部分 移到c柱时,它的中间变量柱子只有一个(因为一个柱子已被上半部份 占了).b,c也移到目标柱子时同理.…
这几天刷了杭电的汉诺塔一套,来写写题解. HDU1207 汉诺塔II HDU1995 汉诺塔V HDU1996 汉诺塔VI HDU1997 汉诺塔VII HDU2064 汉诺塔III HDU2077 汉诺塔IV HDU2175 汉诺塔IX HDU2184 汉诺塔VIII HDU2511 汉诺塔 X HDU1207 汉诺塔II 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1207 ,多柱汉诺塔问题. 先说下四柱汉诺塔的Frame算法: (1)用4柱…
B . [ 例 题 2 ] 奇 怪 汉 诺 塔 B. [例题2]奇怪汉诺塔 B.[例题2]奇怪汉诺塔 题目描述 汉诺塔问题,条件如下: 这里有 A A A. B B B. C C C 和 D D D 四座塔. 这里有 n n n个圆盘, n n n 的数量是恒定的. 每个圆盘的尺寸都不相同. 所有的圆盘在开始时都堆叠在塔 A A A上,且圆盘尺寸从塔顶到塔底逐渐增大. 我们需要将所有的圆盘都从塔 A A A 转移到塔 D D D 上. 每次可以移动一个圆盘,当塔为空塔或者塔顶圆盘尺寸大于被移动圆…
难度等级:白银 3145 汉诺塔问题 题目描述 Description 汉诺塔问题(又称为河内塔问题),是一个大家熟知的问题.在A,B,C三根柱子上,有n个不同大小的圆盘(假设半径分别为1-n吧),一开始他们都叠在我A上(如图所示),你的目标是在最少的合法移动步数内将所有盘子从A塔移动到C塔. 游戏中的每一步规则如下: 1. 每一步只允许移动一个盘子(从一根柱子最上方到另一个柱子的最上方) 2. 移动的过程中,你必须保证大的盘子不能在小的盘子上方(小的可以放在大的上面,最大盘子下面不能有任何其他…
Description 一个汉诺塔,给出了移动的优先顺序,问从A移到按照规则移到另一个柱子上的最少步数. 规则:小的在大的上面,每次不能移动上一次移动的,选择可行的优先级最高的. Sol DP. 倒着DP.但是他有优先级,所以他的方案是唯一的. 状态 \(f[a][i]\) 表示 将 \(a\) 柱上的 \(i\) 个移到,能移动到的柱子上的步数. 他能移动到的柱子也是唯一的,这个可以跟DP一起递推出来. \(g[a][j]\) 表示 将 \(a\) 柱上的 \(i\) 个能移动到的柱子. 然后…
1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1030  Solved: 638[Submit][Status][Discuss] Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体. 对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移动的盘…
http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题意:汉诺塔规则,只不过盘子n<=30,终点在B柱或C柱,每一次移动要遵守规则:1.小的不能放在大的下边.2.之前移动过的圆盘不能再次移动.3.如果有多个可移动圆盘那么按照题目所给的优先级移动. #include <cstdio> #include <cstring> #include <cmath> #include <string> #incl…
题目描述 Description 汉诺塔问题(又称为河内塔问题),是一个大家熟知的问题.在A,B,C三根柱子上,有n个不同大小的圆盘(假设半径分别为1-n吧),一开始他们都叠在我A上(如图所示),你的目标是在最少的合法移动步数内将所有盘子从A塔移动到C塔. 游戏中的每一步规则如下: 1. 每一步只允许移动一个盘子(从一根柱子最上方到另一个柱子的最上方) 2. 移动的过程中,你必须保证大的盘子不能在小的盘子上方(小的可以放在大的上面,最大盘子下面不能有任何其他大小的盘子) 如对于n=3的情况,一个…
题目描述 苟利国家生死以,岂因福祸避趋之?作为ACM真正的粉丝,应该都听闻过汉诺塔问题,汉诺塔问题是这样的: 有三根柱子,编号A,B,C柱,初始情况下A柱上有n个盘子,小盘子在上大盘子在下,n个盘子大小各不一样,每次移动一个最上层的盘子算作一步,大盘子无法移动到小盘子上面,现在要把n个盘子从A柱全部移动到C柱,请问一共需要多少步? 现在对汉诺塔问题加以限制,每次移动只能经由中间柱实现,即是说如果想从A柱移动到C柱,只能A到B,然后B到C这样移动,反之亦然,那么请问,n个盘子从A柱全部移动到C柱一…
题目网址 :http://acm.nyist.net/JudgeOnline/problem.php?pid=89 汉诺塔问题的经典结论: 把i个盘子从一个柱子整体移到另一个柱子最少需要步数是 2的i次方减一.那我们这个给定一个初始局面,求他到目标局面(全部移到第三个柱子上)需要的最少步数.怎么办呢!! 分析: 1.总的来说一定是先把最大的盘子移到第三个柱子上, 然后再把第二大的移到柱子3上, 然后再把第三大的盘子移到柱子3上.........直到把最小的盘子(1号盘子)移到柱子3上,才算结束.…
Problem Description 用1,2,-,n表示n个盘子,称为1号盘,2号盘,-.号数大盘子就大.经典的汉诺塔问 题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于 印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小 顺序摞着64片黄金圆盘.上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱 子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘.我们 知道最少需要移动2^64-1次.在移动过程中…
本文出自   http://blog.csdn.net/shuangde800 题目点击打开链接 题意: 汉诺塔游戏请看 百度百科 正常的汉诺塔游戏是只有3个柱子,并且如果有n个圆盘,至少需要2^n-1步才能达到目标. 但是在这题中,有4根柱子,并且按照下面规则来玩: 1. 先把圆盘顶部前k个盘子全部搬到第四根柱子上, 2. 然后把剩下的n-k个盘子在前3根柱子中按照经典的规则搬到某个柱子上(假设是a柱), 3. 最后再把那k个盘子搬到目标a柱上. 问按照这样的规则,最少需要几步? 思路: 我们…
汉诺塔III Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 13271    Accepted Submission(s): 6095 Problem Description 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右边…
汉诺塔VII Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 1503 Accepted Submission(s): 1077   Problem Description n个盘子的汉诺塔问题的最少移动次数是2^n-1,即在移动过程中会产生2^n个系列.由于发生错移产生的系列就增加了,这种错误是放错了柱子,并不会把大盘放到小盘上,即各柱子从…
汉诺塔问题:如果将n个盘子(由小到大)从a通过b,搬到c,搬运过程中不能出现小盘子在大盘子下面的情况. 思路分析:假设前要移动第100个盘子,分两步走,移动第99个:再移动第100个:而要移动第99个,同样分两部,移动第98个,再移动第99个,以此类推: if(n>1) { 1.先将A柱上的前n-1个盘子从A借助C移动到B; 2.把A柱子上的第n个盘子直接移动到C: 3.再将B柱子上的n-1个盘子借助A移动到C; } #!/usr/bin/python #encoding=utf-8 def h…
问题描述   在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔.庙宇和众生也都将同归于尽.   扯远了,把这个问题简单描述下有A,B,C三根柱子,将A柱上N个从小到大…
汉诺塔问题 汉诺塔是根据一个传说形成的一个问题.汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 思路 设hanoi(a, b, c, n)表示从A移动n个盘到C.那么要实现这个操作,首先要把A上面的n-1个盘移动到B,再把最大的第n个盘直接从A移动到C,然后把…
# -*- coding: utf-8 -*- #汉诺塔移动问题 # 定义move(n,a,b,c)函数,接受参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量 # 然后打印出把所有盘子从A借助B移动到C的方法 def move(n,a,b,c): if n==1: print('move', a, '-->', c) else: move(n-1,a,c,b) move(1,a,b,c) move(n-1,b,a,c) move(5,'A','B','C') #计算移动步数 def f(n…
一.汉诺塔问题 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘 二.汉诺塔问题分析 我们可以将问题简化描述为:n个盘子和3根柱子:A(源).B(备用).C(目的),盘子的大小不同且中间有一孔,可以将盘子“串”在柱子上,每个盘子只能放在比它大的盘子上面.起初,所有…
汉诺塔问题不管在任何编程语言里都是经典问题,是采用递归算法的经典案例,该问题可以抽象如下: 一 .3根圆柱A,B,C,其中A上面串了n个圆盘 二 .这些圆盘从上到下是按从小到大顺序排列的,大的圆盘任何时刻不得位于小的圆盘上面 三 .每次移动一个圆盘,最终实现将所有圆盘移动到C上 利用Python语言接近自然语言的特性,开发者可以更容易的将递归算法翻译成程序语句,需要的代码量很小.汉诺塔问题的解决步骤用语言描述很简单,仅三步: A,B,C三个圆柱,分别为初始位,过渡位,目标位,设A柱为初始位,C位…
运用Turtle实现汉诺塔的可视化运行(递归算法) 汉诺塔问题又名河内塔问题,是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 由题意得,此问题需要运用递归算法解决. 现在我们运用递归算法来解决汉诺塔 运行代码如下: def good(n,a,b,c): if n==1: #当只有一个…
一.问题背景 汉诺塔问题是源于印度一个古老传说. 源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘. 简单来说目的就是要我们把盘子按照规则从A移到C 二.思路 此处我用递归的思想理解汉诺塔问题.递归的思想容易理解,但是运用在代码上的算法并不是解决汉诺塔问题的最佳算法. 我们初定有n个盘子,…
汉诺塔问题源于印度的一个古老传说:梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.梵天命令婆罗门把圆盘按大小顺序重新摆放在另一根柱子上,并且规定小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘.当所有的黄金圆盘都重新摆放在另一根柱子上时,世界就将在霹雳声中毁灭,梵塔.庙宇和众生都将同归于尽. 假设A是起始柱,B是中间柱,C是目标柱. 从最简单的例子开始看: 如果A柱上只剩一个圆盘,那么将圆盘从A柱移到C柱即可. (A --> C) 如果A柱上剩两…
汉诺塔 汉诺塔II hdu1207: 先说汉若塔I(经典汉若塔问题),有三塔.A塔从小到大从上至下放有N个盘子.如今要搬到目标C上. 规则小的必需放在大的上面,每次搬一个.求最小步数. 这个问题简单,DP:a[n]=a[n-1]+1+a[n-1],先把 上面的n-1个放在B上,把最大的放在目标C上,再把N-1个放回到C上就可以. 网上的一种最优解法例如以下:(1)将x(1<=x<=n)个盘从a柱依靠b,d柱移到c柱.这个过程须要的步数为F[x];(2)将a柱上剩下的n-x个盘依靠b柱移到d柱(…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1207 中文题目,在原来三个柱子的情况下(汉诺塔一),增加了一个柱子,难度也增加了. 思路: 思考时尽量和汉诺塔一联系起来. 1 ,先看汉诺塔一的情况 只有一个盘子时,只需挪动一步:假如n个盘子要移动An步,则有n+1个盘子可以先通过An步把上面的n个盘子挪到第二个柱子上,再挪最大的盘子,最后把n个盘子挪到大的上面,总共2An+1步,则有A(n+1)=2An+1. 以上式子可推得An=2^n-1. 2,回…