[bzoj1297] [洛谷P4159] [SCOI2009] 迷路】的更多相关文章

Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意:windy不能在某个节点逗留,且通过某有向边的时间严格为给定的时间. Input 第一行包含两个整数,N T. 接下来有 N 行,每行一个长度为 N 的字符串. 第i行第j列为'0'表示从节点i到节点j没有边. 为'1'到'9'表示从节点i到节点j需要耗费的时间. Output 包…
P4159 [SCOI2009]迷路 如果边权只有 0/1 那么不就是一个灰常简单的矩阵快速幂吗! 然鹅边权 $<=9$ 所以我们把每个点拆成9个点! 解决~ #include<iostream> #include<cstdio> #include<cstring> #define re register using namespace std; ; int m,n,t;long long q; struct matrix{ ][]; matrix(){memse…
BZOJ原题链接 洛谷原题链接 简单的数位\(DP\),套模板就好. #include<cstdio> #include<cstring> using namespace std; const int N = 15; int f[N][N], a[N]; inline int re() { int x = 0; char c = getchar(); bool p = 0; for (; c < '0' || c > '9'; c = getchar()) p |= c…
次元传送门:洛谷P4158 思路 f[i][j][k][0/1]表示在坐标为(i,j)的格子 已经涂了k次 (0是此格子涂错 1是此格子涂对)涂对的格子数 显然的是 每次换行都要增加一次次数 那么当j=1时: f[i][j][k][]=max(f[i-][m][k-][],f[i-][m][k-][])+;//可以从前一排最后一个转移过来 记得+1 f[i][j][k][]=max(f[i-][m][k-][],f[i-][m][k-][]);//同理 不用+1 当j>1时分成两种情况 当第i格…
P2657 [SCOI2009]windy数 题目描述 \(\tt{windy}\)定义了一种\(\tt{windy}\)数.不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(\tt{windy}\)数. \(\tt{windy}\)想知道, 在\(A\)和\(B\)之间,包括\(A\)和\(B\),总共有多少个\(\tt{windy}\)数? 输入输出格式 输入格式: 包含两个整数,\(A\) \(B\). 输出格式: 一个整数 说明 \(100\%\)的数据,满足 \(1 \le…
P2657 [SCOI2009]windy数 题目大意: windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个windy数? 思路: 其实挺简单的,算是数位DP入门级别的题吧,特别要注意限制,如果没有前导0和没有最高位限制就不能返回,反之答案是错误的,(原来前导0也很重要!) 设dp[pos][j]表示第pos位上一位是j的方案数,然后记搜即可. 记忆化搜索: #include<bits/s…
P2657 [SCOI2009]windy数 同步数位DP 这题还是很简单的啦(差点没做出来 个位打表大佬请离开(包括记搜),我这里讲的是DP!!! 首先Cal(b+1)-Cal(a),大家都懂吧(算了,复制一遍吧<<((因为当前的Cal(k)是计算出从1到k-1的符合条件的数的个数,所以要计算a~b的个数要用Cal(b+1)-Cal(a).))>>) f[i][j]定义一样,以j开始的且符合条件的总位数为i的答案个数.(好绕啊) 预处理转移不用讲吧:f[i][j]+=f[i-1]…
题目传送门 windy数 题目描述 windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之间,包括A和B,总共有多少个windy数? 输入输出格式 输入格式: 包含两个整数,A B. 输出格式: 一个整数 输入输出样例 输入样例#1: 1 10 输出样例#1: 9 输入样例#2: 25 50 输出样例#2: 20 说明 100%的数据,满足 1 <= A <= B <= 2000000000 . 分析: 据大佬说…
题面 传送门 题解 首先要解决一个问题,就是怎么判断一个点是否在多边形内部 从这个点向某一个方向做一条射线,如果这条射线和多边形的交点为奇数说明在多边形内,否则在多边形外 然而有一些特殊情况,比方说一个多边形\((0,0),(2,0),(2,1),(1,1),(1,2)\),如果一个点\((1,1)\)向上做射线和这个多边形有两个交点,然而这个点还是在多边形内部的 那么我们可以通过加一些\(eps\)之类的来避免这种情况,具体可以看代码 把所有的豆子状压,枚举起点\((x,y)\),设\(f_{…
题目大意:不含前导零且相邻两个数字之差至少为$2$的正整数被称为$windy$数.问$[A, B]$内有多少个$windy$数? 题解:$f_{i, j}$表示数有$i$位,最高位为$j$(可能为$0$),$f_{i, j} = \sum\limits_{0 \leq k \leq 9, |k - j| > 2} f_{i - 1, k}$ 然后求出$[0, A)$和$[0, B]$分别有多少个$windy$数,相减即可 卡点:无 C++ Code: #include <cstdio>…