Miler-Rabbin素数判定】的更多相关文章

C - Prime number or not Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice FZU 1649 Description Your task is simple.Give you a number N, you should judge whether N is a prime number or not. Input There…
素数判定 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 68870    Accepted Submission(s): 23862 Problem Description 对于表达式n^2+n+41,当n在(x,y)范围内取整数值时(包括x,y)(-39<=x<y<=50),判定该表达式的值是否都为素数.   Input 输入…
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<time.h> #include<iostream> #include<algorithm> using namespace std; //**************************************************************** // Miller_Rabin 算法进…
1702 素数判定 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description 一个数,他是素数么? 设他为P满足(P<=263-1) 输入描述 Input Description P 输出描述 Output Description Yes|No 样例输入 Sample Input 2 样例输出 Sample Output Yes 数据范围及提示 Data Size & Hint 算法导论--数论那一节 注意Carmi…
素数判定 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 71785    Accepted Submission(s): 24969 Problem Description 对于表达式n^2+n+41,当n在(x,y)范围内取整数值时(包括x,y)(-39<=x<y<=50),判定该表达式的值是否都为素数.   Input 输入…
素数判定 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 87861    Accepted Submission(s): 30699 Problem Description 对于表达式n^2+n+41,当n在(x,y)范围内取整数值时(包括x,y)(-39<=x<y<=50),判定该表达式的值是否都为素数. Input 输入数…
素数判定 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 73005    Accepted Submission(s): 25455 Problem Description 对于表达式n^2+n+41,当n在(x,y)范围内取整数值时(包括x,y)(-39<=x<y<=50),判定该表达式的值是否都为素数.   Input 输…
素数判定Miller_Rabin算法详解: http://blog.csdn.net/maxichu/article/details/45458569 大数因数分解Pollard_rho算法详解: http://blog.csdn.net/maxichu/article/details/45459533 然后是参考了kuangbin的模板: http://www.cnblogs.com/kuangbin/archive/2012/08/19/2646396.html 模板如下: //快速乘 (a…
HDU 2011:多项式求和 Description 多项式的描述如下: 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... 现在请你求出该多项式的前n项的和.   Input 输入数据由2行组成,首先是一个正整数m(m<100),表示测试实例的个数,第二行包含m个正整数,对于每一个整数(不妨设为n,n<1000),求该多项式的前n项的和.   Output 对于每个测试实例n,要求输出多项式前n项的和.每个测试实例的输出占一行,结果保留2位小数.   Sample I…
转载自:http://www.dxmtb.com/blog/miller-rabbin/ 普通的素数测试我们有O(√ n)的试除算法.事实上,我们有O(slog³n)的算法. 定理一:假如p是质数,且(a,p)=1,那么a^(p-1)≡1(mod p).即假如p是质数,且a,p互质,那么a的(p-1)次方除以p的余数恒等于1.(费马小定理) 该定理的逆命题是不一定成立的,但是令人可喜的是大多数情况是成立的. 于是我们就得到了一个定理的直接应用,对于待验证的数p,我们不断取a∈[1,p-1]且a∈…