吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Regression with One Variable Linear Algebra Review Linear Regression with Multiple Variables Octave/Matlab Tutorial…
18.1问题描述和流程图 (1)图像文字识别是从给定的一张图片中识别文字. (2)流程包括: 1.文字侦测 2.字符切分(现在不需要切分了) 3.字符分类 18.2滑动窗口 在行人检测中,滑动窗口是首先训练一个固定尺寸输入的判断是否有行人的网络,然后在一张图片中裁该尺寸的图片,送入到网络中:然后不断移动裁剪区,重复以上过程,知道裁剪到最后,这时按比例放大裁剪区,然后将裁剪到的图片缩放到网络的输入,如此循环. 首先滑动窗口同样用于文字识别,做字符与非字符区分,然后把字符区域适当扩展,然后合并重叠区…
Support Vector Machines Unsupervised Learning Dimensionality Reduction…
Neural Networks: Learning Advice for Applying Machine Learning Machine Learning System Design…
Anomaly Detection Recommender Systems Large Scale Machine Learning…
Logistic Regression Regularization Neural Networks: Representation…
参考资料: 吴恩达教授机器学习课程 机器学习课程中文笔记 Week2 一. 多变量线性回归(Linear Regression with Multiple Variables) 多变量就时当一个example里有n个特征的情况,将n个特征统一到一个matrix里去看作整体. 多变量线性回归还是先出cost function,然后用梯度下降算法/正规方程法使cost function最小化 特征的选择 多变量线性回归中有很多特征,选择合适的特征很重要,下面是常见的可用特征: training se…
参考资料: 吴恩达教授机器学习课程 机器学习课程中文笔记 Week 1 一. 引言 机器学习模型可分为监督学习Superviese learning(每个数据集给出了正确的值)和无监督学习Unsupervised learning(数据集只有特征,没有对应正确的值) 机器学习处理的问题可以分为Regression回归问题(结果是real-valued output连续的值)和Classification问题 (结果是discrete-valued离散的值) 二. 单变量线性回归(Linear R…
监督学习(supervised learning) 假设我们有一个数据集(dataset),给出居住面积和房价的关系如下: 我们以居住面积为横坐标,房价为纵坐标,组成数据点,如(2104, 400),并把这些数据点描到坐标系中,如下: 由这些数据,我们怎么才能预测(predict)其他房价呢?其中房价作为居住面积的函数. 为了方便描述,我们用x(i)表示输入变量(即居住面积),也叫做输入特征(features):同时,用y(i)表示输出(即房价),也叫做目标(target)变量.有序对   (x…
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果.监督学习的训练集要求包括输入输出,也可以说是特征和目标.训练集中的目标是由人标注的.常用于:训练神经网络.决策树.回归分析.统计分类 无监督学习:输入数据没有被标记,也没有确定的结果.样本数据类别未知,需要根据样本间的相似性对样本集进行分类,试图使类内差距最小化,…
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.5重建压缩表示 Reconstruction from Compressed Representation 使用PCA,可以把 1000 维的数据压缩到100 维特征,或将三维数据压缩到一二维表示.所以,如果如果把PCA任务是一个压缩算法,应该能回到这个压缩表示之前的形式,回到原有的高维数据的一种近似.下图是使用PCA将样本\(x^{(i)}映射到z^{(i)}\)上 即是否能通过某种方法将z上的点重新恢复成使用\(x_{…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landmark)如图所示为\(l^{(1)},l^{(2)},l^{(3)}\),设核函数为 高斯函数 ,其中设预测函数y=1 if \(\theta_0+\theta_{1}f_1+\theta_{2}f_2+\theta_{3}f_3\ge0\) 在实际中需要用 很多标记点 ,那么如何选取 标记点(lan…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematics Behind Large Margin classification 向量内积 假设有两个向量\(u=\begin{bmatrix}u_1\\u_2\\ \end{bmatrix}\),向量\(v=\begin{bmatrix}v_1\\v_2\\ \end{bmatrix}\),其中向量的内积…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin Intuition 人们有时将支持向量机看作是大间距分类器.在这一部分,我将介绍其中的含义,这有助于我们直观理解 SVM 模型的假设是什么样的.以下图片展示的是SVM的代价函数: 最小化SVM代价函数的必要条件 如果你有一个正样本,y=1,则只有在z>=1时代价函数\(cost_1(z)\)才等于0.…
一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:"Negative Class",1:"Possitive Class". 逻辑回归的预测函数表达式hθ(x)(hθ(x)>=0 && hθ(x)<=1): 其中g(z)被称为逻辑函数或者Sigmiod函数,其函数图形如下: 理解预测函数hθ(x)的…
一.多变量线性回归问题(linear regression with multiple variables) 搭建环境OctaveWindows的安装包可由此链接获取:https://ftp.gnu.org/gnu/octave/windows/,可以选择一个比较新的版本进行安装,本人win10操作系统,安装版本4.2.1,没有任何问题.注意不要安装4.0.0这个版本.当然安装MATLAB也是可以的,我两个软件都安装了,在本课程中只使用Octave就已经足够用了! 符号标记:n(样本的特征数/属…
一.初识机器学习 何为机器学习?A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.理解:通过实验E,完成某一项任务T,利用评价标准P对实验结果进行迭代优化! 机器学习主要包括监督学习…
一.问题动机 异常检测(Anomaly detection)问题是机器学习算法的一个常见应用.这种算法的一个有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又类似于一些监督学习问题. 给定数据集…
如果你准备研究机器学习的东西,或者构造机器学习应用程序,最好的实践方法不是建立一个非常复杂的系统,拥有多么复杂的变量:而是构建一个简单的算法,这样你可以很快地实现它. 构建一个学习算法的推荐方法为:1. 从一个简单的能快速实现的算法开始,实现该算法并用交叉验证集数据测试这个算法2. 绘制学习曲线,决定是增加更多数据,或者添加更多特征,还是其他选择3. 进行误差分析:人工检查交叉验证集中我们算法中产生预测误差的实例,看看这些实例是否有某种系统化的趋势. 类偏斜情况表现为我们的训练集中有非常多的同一…
针对逻辑回归问题,我们在之前的课程已经学习过两种优化算法:我们首先学习了使用梯度下降法来优化代价函数…
到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致它们效果很差. 在这段视频中,我会解释什么是过度拟合问题,并且在此之后接下来的几个视频中,我们将谈论一种称为正则化(regularization)的技术,它可以改善或者减少过度拟合问题.如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为0),但是可能会不能推…
梯度下降算法和线性回归算法比较如图: 对我们之前的线性回归问题运用梯度下降法,关键在于求出代价函数的导数,即: 我们刚刚使用的算法,有时也称为批量梯度下降.实际上,在机器学习中,通常不太会给算法起名字,但这个名字”批量梯度下降”,指的是在梯度下降的每一步中,我们都用到了所有的训练样本,在梯度下降中,在计算微分求导项时,我们需要进行求和运算,所以,在每一个单独的梯度下降中,我们最终都要计算这样一个东西,这个项需要对所有…
http://www.cnblogs.com/xing901022/p/9374258.html 本章讲述的是一个复杂的机器学习系统,通过它可以看到机器学习的系统是如何组装起来的:另外也说明了一个复杂的流水线系统如何定位瓶颈与分配资源. 更多内容参考 机器学习&深度学习 OCR的问题就是根据图片识别图片中的文字: 这种OCR识别的问题可以理解成三个步骤: 文本检测 字符切分 字符识别 文本检测 文本的检测可以用行人的检测来做,思路差不多. 我们定义几个固定大小尺寸的窗口,从照片的左上角开始扫描.…
http://www.cnblogs.com/xing901022/p/9332529.html 本章主要讲解了逻辑回归相关的问题,比如什么是分类?逻辑回归如何定义损失函数?逻辑回归如何求最优解?如何理解决策边界?如何解决多分类的问题? 更多内容参考 机器学习&深度学习 有的时候我们遇到的问题并不是线性的问题,而是分类的问题.比如判断邮件是否是垃圾邮件,信用卡交易是否正常,肿瘤是良性还是恶性的.他们有一个共同点就是Y只有两个值{0,1},0代表正类,比如肿瘤是良性的:1代表负类,比如肿瘤是恶性的…
feature study within neural network 在regression问题中,根据房子的size, #bedrooms原始特征可能演算出family size(可住家庭大小), zip code可能演算出walkable(可休闲去处),富人比例和zip code也可能决定了学区质量,这些个可住家庭大小,可休闲性,学区质量实际上对于房价预测有着至关重要的影响,但是他们都无法直接从原始数据输入获取,而是进过hidden layer学习抽象得出的特征. loss functio…
14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.3主成分分析原理Proncipal Component Analysis Problem Formulation 主成分分析(PCA)是最常见的降维算法 当主成分数量K=2时,我们的目的是找到一个低维的投影平面,当把所有的数据都投影到该低维平面上时,希望所有样本 平均投影误差 能尽可能地小. 投影平面 是一个由两个经过原点的向量规划而成的平面,而 投影误差 是 从特征向量向该投影平面作垂线的长度. 当主成分数量K=1时,我…
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述支持向量机,事实上,我将会从逻辑回归开始展示我们如何一点一点修改来得到本质上的支持向量机. 逻辑回归公式 逻辑回归公式如下图所示, 可以看出逻辑回归公式由两个变量x和\(\theta\)构成,其中x表示输入的数据,而\(\theta\)是可学习的变量,如图中右半部分所示,其图像坐标轴横轴为x.\(h…
11. 机器学习系统的设计 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 11.3 偏斜类的误差度量 Error Metrics for Skewed Classes 偏斜类 Skewed Classes 类偏斜情况表现为训练集中有非常多的同一种类的实例,只有很少或没有其他类的实例 示例 例如我们希望用算法来预测癌症是否是恶性的,在我们的训练集中,只有0.5%的实例是恶性肿瘤.假设我们编写一个非学习而来的算法,在所有情…
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常大时,括号括起来的部分就接近于0,所以就变成了: 非常有意思的是,在最小化 1/2*∑θj^2的时候,最小间距也达到最大.原因如下: 所以: 即:如果我们要最小化1/2*∑θj^2,就要使得||θ||尽量小,而当||θ||最小时,又因为,所以p(i)最大,即间距最大. 注意:C可以看成是正则项系数λ…
一.基本操作 本课程有编程作业,编程作业需要使用Matlab或Octave,本文章使用Octave.下载地址:http://www.gnu.org/software/octave/#install.安装完成后,打开GNU Octave (GUI)开始写代码. 1.基本运算 值得注意的是Octave使用“^”符号表示次幂,而不是向其他语言一样表示异或,而异或运算使用xor()函数.并且不等于使用“~=”而不是“!=”. % 基本运算 5 + 6 3 - 2 5 * 8 1 / 2 % 0.5 2…