关于非旋FHQ Treap的复杂度证明】的更多相关文章

非旋FHQ Treap复杂度证明(类比快排) a,b都是sort之后的排列(从小到大) 由一个排列a构造一颗BST,由于我们只确定了中序遍历=a,但这显然是不能确定一棵树的形态的. 由一个排列b构造一颗Heap(大根),由于没有重复元素,然后人为钦定左儿子<右儿子,那么他的后序遍历=b. 但是一棵树,如果中序遍历和后续遍历确定了,那么他的形态也就确定了.证明考虑构造一种由中序和后序遍历的序列还原一颗确定的树的算法. 考虑对于一个后序遍历,最后那个数\(u\)一定是根. 那么确定\(u\)在中序遍…
前置知识:二叉搜索树 以下摘自 ↑: 二叉搜索树每次操作访问O(深度)个节点. 在刻意构造的数据中,树的形态会被卡成一条链,于是复杂度爆炸 它的复杂度与直接暴力删除类似. 但二叉搜索树扩展性强.更复杂的\(splay,treap,SGT\)等都基于二叉搜索树,只是通过一些对树的形态的改变来保证操作的复杂度,且保持树中序遍历的形态. 随机数据还是很强势的. 在理解了二叉搜索树之后,我们来看非旋\((fhq)Treap\). 既然二叉搜索树在刻意构造的数据中会被卡成一条链,那么我们可以考虑对每个结点…
传送门 看了一圈,好像真的没什么用指针的呢.. 明明觉得指针很好看(什么??你说RE???听不见听不见) 其实我觉得用数组的话不RE直接WA调起来不是更困难嘛,毕竟通过gdb还可以知道哪里RE,WA就不知道咋回事了,是不是很有道理,虽然我还是调了几小时 我写的是fhq treap,核心是split和merge操作,思想高赞dalao都讲得很清楚,我语文弱渣就不班门弄斧了,主要是想提供一个指针版的参考吧QAQ 我真的是一整天都在搞分裂(split),有种要进入七月枪毙名单的赶脚,慌张.jpg #i…
简介 二叉搜索树, 可以维护一个集合/序列, 同时维护节点的 \(size\), 因此可以支持 insert(v), delete(v), kth(p,k), rank(v)等操作. 另外, prev(v) == kth(rt,rank(v)-1); next(v) == kth(rt,rank(v)+1). 平衡树通过各种方法保证二叉搜索树的平衡, 从而达到 \(O(\log n)\) 的均摊复杂度. Splay Splay 不仅可以实现一般平衡树的操作, 还可以实现序列的翻转/旋转等操作.…
非旋  $treap$ (FHQ treap)的简单入门 前置技能 建议在掌握普通 treap 以及 左偏堆(也就是可并堆)食用本blog 原理 以随机数维护平衡,使树高期望为logn级别, FHQ 不依靠旋转,只有两个核心操作merge(合并)和split(拆分) 所谓随机数维护平衡就是给每个节点一个随机值 key (下文中没有加随机的就代表是真实权值), 然后整棵树中 key 值要满足小(大)根堆的性质(也就是heap), 同时也要满足平衡树(tree)的性质(也就是每个节点左子树内节点真实…
原文链接https://www.cnblogs.com/zhouzhendong/p/Balanced-Binary-Tree.html 注意是简单教程,不是入门教程. splay 1. 旋转: 假设点 y 原是点 x 的 father,旋转操作可以在不改变中序遍历的基础上,将 y 变成 x 的儿子.例如: 旋转后: 代码: int wson(int x){ return son[fa[x]][1]==x; } void pushup(int x){ tot[x]=cnt[x]+tot[son[…
非旋$Treap$ 其高级名字叫$Fhq\ Treap$,既然叫$Treap$,它一定满足了$Treap$的性质(虽然可能来看这篇的人一定知道$Treap$,但我还是多说几句:$Fhp\ Treap$就是继承了$Treap$的随机系统,在二叉搜索的基础上,每个点加一个随机化处理,这些随机值满足堆的性质……通俗一点讲,就是$Fhp\ Treap$它每个点有至少两个值,一个是val,即存的数值,这些数值满足二叉搜索树,也就是父亲比左孩子小/大,则右孩子比父亲小/大:还有一个是key,是个随机值,这些…
平衡树这种东西,我只会splay.splay比较好理解,并且好打,操作方便. 我以前学过SBT,但并不是很理解,所以就忘了怎么打了. 许多用平衡树的问题其实可以用线段树来解决,我们真正打平衡树的时候一般都是维护序列之类的. 维护序列时,splay特别方便,所以一般情况下打splay就好了.其它的平衡树也可以,可是如果见到翻转操作的时候,那些平衡树就会崩(至少我不知道那些平衡树有什么可以翻转的做法). 但是splay的常数很大(常数最大的平衡树),并且有的时候需要可持久化. 这个时候就要用到非旋T…
国际惯例的题面:看起来很不可做的样子,我们先来整理一下题意吧.就是,维护每个点曾经拥有过的最大的两个属性值,支持把点的位置移动.我们用map对每个位置进行离散化,对每个位置建立一个平衡树.为了方便分离,这个平衡树的关键字是节点编号.然后把每个点当做一个节点,放进其所在位置的平衡树里.剩下要做的就是平衡树分离出一个点,合并一个点,还有打标记了.对于士气值的标记,我们维护平衡树中的max,每次合并的时候,用这个新点的威武值去给整棵树打标记,再用树中的max给这个新点打标记.团结值的标记,合并后一起打…
描述 有N张卡片,编号从0到n-1, 刚开始从0到n-1按顺序排好. 现有一个操作, 对于p. l,表示从第p张卡片之后的l张卡片拿到 最前面. 例如n=7的时候, 刚开始卡片序列为0 1 2 3 4 5 6 对于操作p=2 l=3执行一次之后序列变为 2 3 4 0 1 5 6 求出所有操作之后, 奇数位上编号的和 输入 第一行两个整数 N. M,表示有 N 张卡片,接下来 M 个操作. 接下来 M 行, 每行有三个整数 p. l. r, 表示重复 r 次 p. l 操作. 输出 一个整数表示…
描述 初始有一个空集,依次插入N个数Ai.有M次询问Bj,表示询问第Bj个数加入集合后的排名为j的数是多少 输入 第一行是两个整数N,M 接下来一行有N个整数,Ai 接下来一行有M个整数Bj,保证数据合法 输出 M行,回答每个询问 样例输入 7 4 9 7 2 8 14 1 8 1 2 6 6 样例输出 9 9 7 8 提示 [说明] 第一次询问,当前集合{9},1th=9 第二次询问,当前集合{9,7}的第2=9 第三次询问,当前集合{9,7,2,8,14,1}的第3=7 第四次询问,当前集合…
传送门 平衡树好题. 我仍然是用的fhqtreap,感觉速度还行. 维护也比线段树splay什么的写起来简单. %%%非旋treap大法好. 代码: #include<bits/stdc++.h> #define N 500005 #define inf 0x3f3f3f3f using namespace std; queue<int>garbage; typedef pair<int,int> res; int n,m,rt=0,cnt=0,a[N],son[N][…
传送门 经典的平衡树问题,之前已经用splay写过一次了,今天我突发奇想,写了一发非旋treap的版本,发现挺好写的(虽然跑不过splay). 代码: #include<bits/stdc++.h> #define N 100005 using namespace std; typedef pair<int,int> res; int rt=0,n,m,cnt=0,son[N][2],siz[N],val[N],rd[N],rev[N]; inline int read(){ in…
传送门 就是普通平衡树,可以拿来练非旋treap" role="presentation" style="position: relative;">treaptreap的板子. 贴个代码: #include<bits/stdc++.h> #define N 300005 using namespace std; typedef pair<int,int> res; int n; inline int read(){ int a…
1588: [HNOI2002]营业额统计 Time Limit: 5 Sec Memory Limit: 162 MB Description 营业额统计 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额.分析营业情况是一项相当复杂的工作.由于节假日,大减价或者是其他情况的时候,营业额会出现一定的波动,当然一定的波动是能够接受的,但是在某些时候营业额突变得很高或是很低,…
BZOJ3065. 去年用pascal 块链过了.. 今年来试了试非旋treap大法   注定被块链完爆 代码留这. 第一份 :辣鸡的  垃圾回收做法  跑得极慢 #include <bits/stdc++.h> #define M 70000 using namespace std; ]; ]; ],A[],n,m,rt,ans,l,r,x,k,t,c,T,d[]; ]; void CL(int u){ if (!u) return; --b[u].k; if (!b[u].k) nex[u…
目录 核心思想 核心操作 其他操作 参考程序 核心思想 主要的思想与treap是一样的.通过让二叉查找树同时满足堆(随机参数)的性质来防止深度过大.与普通treap不同的是非旋treap通过树的分裂与合并来实现这一点,而非旋转. 核心操作 Update 如果是要实现类似于 set<int> 的功能,可以不用这一部分.本文以 loj104 为例,我们需要在这里更新节点的 \(Size\) 信息. void node::Update() { Size = Count; if (LeftChild…
先吹一波fhq dalao,竟然和我一个姓,我真是给他丢脸. 昨天treap就搞了一下午,感觉自己弱爆了.然后今天上午又看了一个上午的无旋treap再次懵逼,我太弱了,orzorz. 所以写个博客防止自己忘了吧(其实就是贴个代码). 其实fhq treap中最重要的操作就是split和merge,这样就避免了普通treap中的zig和zag,而且各种查询十分方便,基本查个排名就出来了. #include<iostream> #include<cstdio> #include<…
话说天下大事,就像fhq treap —— 分久必合,合久必分 简单讲一讲.非旋treap主要依靠分裂和合并来实现操作.(递归,不维护fa不维护cnt) 合并的前提是两棵树的权值满足一边的最大的比另一边最小的还小.因此时合并时只需要维护键值的堆性质即可.这样每一次比较根节点,如果x比y小那么y直接接到x的右子树即可(需要满足权值的平衡树性质):否则的话只需要反过来,把x接到y的左子树上.merge函数返回的值应当是合并完后的根节点. 分裂分为两种,排名和权值.然而我认为它们本质上是一样的.对于权…
FHQ Treap,又称无旋treap,一种不基于旋转机制的平衡树,可支持所有有旋treap.splay等能支持的操作(只有在LCT中会比splay复杂度多一个log).最重要的是,它是OI中唯一一种支持可持久化的平衡树. 以下只提供题表与代码,不提供教程. 1.[BZOJ3224]普通平衡树 FHQ Treap的应用一:基础平衡树操作模板题. 由于merge.split和树高是$O(\log n)$的,所以所有基础操作都是$O(\log n)$的. #include<cstdio> #inc…
前言 好久没码过平衡树了! 这次在闪指导的指导下学会了\(FHQ\ Treap\),一方面是因为听说它可以可持久化,另一方面则是因为听说它是真的好写. 简介 \(FHQ\ Treap\),又称作非旋\(Treap\). 其实在我看来,它与\(Treap\)的共同点也只有都借助了随机键值来维护平衡. 具体实现起来,两者真是大为不同. 不过,为助于理解,还是在这里贴上\(Treap\)的博客吧:简析平衡树(二)--Treap. \(FHQ\ Treap\)的核心操作 其他内容我也就不多说了,下面就从…
Splay Splay(伸展树)是一种二叉搜索树. 其复杂度为均摊\(O(n\log n)\),所以并不可以可持久化. Splay的核心操作有两个:rotate和splay. pushup: 上传信息,比如区间和.子树大小... rotate: rotate实现把一个节点\(x\)转到它的父亲\(y\)的位置. 假设\(x\)是\(y\)的左儿子. 那么旋转完之后,\(y\)就会变成\(x\)的右儿子. 那么\(x\)原来的右儿子的地方就被占了,我们就把它放到\(y\)的左儿子. 实际上就是把\…
FHQ Treap FHQ Treap (%%%发明者范浩强年年NOI金牌)是一种神奇的数据结构,也叫非旋Treap,它不像Treap zig zag搞不清楚(所以叫非旋嘛),也不像Splay完全看不懂,而且它能完成Treap与Splay能完成的所有事,代码短,理解也容易. 基本操作 FHQ Treap和Treap很像,都是给每个节点一个随机的权值,使它满足堆的性质.建议先了解Treap(没必要实现,懂得原理即可).不过,如果有两个节点值相同,FHQ Treap不会用一个数组cnt记录个数,而是…
众所周知 Fhq Treap 是 fhq 神仙研究出来的平衡树- 具体实现 每个点实现一个 \(\text{rnd}\) 表示 rand 的值 为什么要 rand 呢 是为了保证树高为 \(\log n\) 从而保证复杂度- FHQ Treap的核心操作是split和merge,其他的操作均以这两个操作为基础进行. 下面所述操作的数据如下所示: int rt = 0 , cnt = 0 , a[N] , sz[N] , rnd[N] , ch[N][2] ; #define ls(x) ch[x…
1.BST二叉搜索树 顾名思义,它是一棵二叉树. 它满足一个性质:每一个节点的权值大于它的左儿子,小于它的右儿子. 当然不只上面那两种树的结构. 那么根据性质,可以得到该节点左子树里的所有值都比它小,右子树的都比它大. 而平衡树都是基于BST的. 为什么叫做平衡树?对于数的操作可能会破坏BST的性质,这时会进行另外的操作,保持它的性质. 为什么要用BST?对于一棵BST,每一次的操作,都相当于进行一次二分,时间复杂度可以降到log级别. 这里写的是两个常用的平衡树. 2.Splay splay树…
鲜花 一些鲜花放在前面,平衡树学了很久,但是每学一遍都忘,原因就在于我只能 70% 理解 + 30% 背板子,所以每次都忘.这次我采取了截然不同的策略,自己按照自己的理解打一遍,大获成功(?),大概打 20 min,调 10 min 结束,然后写下了这篇文章. 虽然但是,感觉 Treap 还是很强的,代码好写好调,而且可以解决很多问题(下面将会提到),好像说是常数大一点?无伤大雅吧-- Treap 首先,从 Treap 的定义开始.Treap 实际上是一种笛卡尔树(笛卡尔树可以看 这篇文章,每个…
原理 以随机数维护平衡,使树高期望为logn级别 不依靠旋转,只有两个核心操作merge(合并)和split(拆分) 因此可持久化 先介绍变量 ; int n; struct Node { int val,key,siz; //权值,随机权值,子树大小 ]; //左右儿子(0左1右) void res() { //清空该节点(用于删除) son[]=son[]=siz=val=key=; } } tree[N]; int ins; int mem[N],inm; //内存回收池 int root…
Preface 关于那些比较基础的平衡树我想我之前已经介绍的已经挺多了. 但是像Treap,Splay这样的旋转平衡树码亮太大,而像替罪羊树这样的重量平衡树却没有什么实际意义. 然而类似于SBT,AVL,RBT这些高级的乱搞平衡树无论时思想还是码量都让人难以接受. 而且在许多复杂的问题中需要维护区间,但是Splay的维护区间对于我这个蒟蒻来说实在是学不会. 许多的原因综合起来,在加上CJJ dalao的偶然安利,我便结识了神奇的FHQ Treap,一眼本命平衡树的感觉. 所以NOIP结束以后立马…
序 今天心血来潮,来学习一下fhq treap(其实原因是本校有个OIer名叫fh,当然不是我) 简介 fhq treap 学名好像是"非旋转式treap及可持久化"...听上去怪怪的.其实就是可以代替LCT.BST等等码量很高的东东. 定义 struct node{ int son[2],val,rand_val,sz;//很好理解,从左到右依次为:左右儿子编号,权值,随机权值(用处后面会讲),此节点下(包括此节点)共有多少个节点 }tr[N]; 操作 最基本的操作 其实都不应该叫做…
这道题要求区间反转...好东西.. 对于Splay:把l-1旋到根,把r+1旋到根的右儿子,这样r+1的左儿子就是整个区间了,然后对这个区间打个tg 注意要插-Inf和Inf到树里面,防止越界,坐标要+1 #include<cstdio> #include<iostream> #define R register int using namespace std; ,Inf=0x3f3f3f3f; inline int g() { R ret=,fix=; register :fix…