$umm$先预警下想入门$FFT$就不要康我滴学习笔记了,,, 就,我学习笔记基本上是我大概$get$之后通过写$blog$加强理解加深记忆这样儿的,有些姿势点我可能会直接$skip$什么的,所以对除了我以外的所有人都十分不友好…
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多项式为\(A(x)=\sum_{i=0}^{n}a_ix^i,B(x)=\sum_{i=0}^{m}b_ix^i\) Prerequisite knowledge: 初中数学知识(手动滑稽) 最简单的多项式方法就是逐项相乘再合并同类项,写成公式: 若\(C(x)=A(x)B(x)\),那么\(C(x…
图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强.去噪.压缩编码等众多领域.本文手工实现了二维离散傅里叶变换和二维离散余弦变换算法,并在多个图像样本上进行测试,以探究二者的变换效果. 1. 傅里叶变换 实验原理 对一幅图像进行离散傅里叶变换(DFT),可以得到图像信号的傅里叶频谱.二维 DFT 的变换及逆变换公式如下: DFT 尽管解决了频域离散化的问题,但运算量太大.从公式中可以看到,有两个嵌套的求和符号,显然直接计算的复杂度为 \(O(n^2)\) .为了加快傅里…
FFT可以用来计算多项式乘法,但是复数的运算中含有大量的浮点数,精度较低.对于只有整数参与运算的多项式,有时,\(\text{NTT(Number-Theoretic Transform)}\)会是更好的选择. 原根 阶 若\(a,p\)互素,且\(p>1\),对于\(a^k \equiv 1 (\mod p)\)的最小的\(k\),称为\(a\)模\(p\)的阶,记做\(\sigma_p(a)\). \(E.g.\) \(\sigma_7(2)=3\) \(2^1\equiv 2(\mod 7…
一.DB2 RACF control module 定义在prefix.SDSNSAMP(DSNXRXAC)中,查找一下数据集 符合*.SDSNSAMP数据集有两个,我这里使用的DB V9,自然prefix就是DSN910了 二.进入DSN910.SDSNSAMP,查看DSNXRXAC成员. 可以知道几个非常有用的值 : &CLASSOPT=2 One set of classes for ALL subsys &CLASSNMT='DSN' DB2 Class Name &CHA…
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\mathcal{F}[f(t)]=\int\limits_{-\infty}^\infty f(t)e^{-iwt}dt \] 傅里叶逆变换是将频率域上的F(w)变成时间域上的函数f(t),一般称\(f(t)\)为原函数,称\(F(w)\)为象函数.原函数和象函数构成一个傅里叶变换对. \[ f(t)…
问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们把A,B,C看作表达式. 即: A(x)=a0 + a1* x + a2 * x2 +... 将A={(x1,A(x1)), (x2,A(x2)), (x3,A(x3))...}叫做A的点值表示法. 那么使用点值表示法做多项式乘法就很简单了:对应项相乘. 那么,如何将A和B转换成点值表示法,再将C转…
问题: 已知$A=a_{0..n-1}$, $B=b_{0..n-1}$, 求$C=c_{0..2n-2}$,使: $$c_i = \sum_{j=0}^ia_jb_{i-j}$$ 定义$C$是$A$,$B$的卷积,记作 $$C = A * B$$ 例如多项式乘法等. 朴素做法是按照定义枚举$i$和$j$,但这样时间复杂度是$O(n^2)$. 能不能使时间复杂度降下来呢? 点值表示法: 我们把$A$,$B$,$C$看作多项式. 即: $$A(x) = \sum_{i=0}^{n-1}a_ix^i…
目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明易懂的FFT(快速傅里叶变换) 快速傅里叶变换(FFT)详解 (下面的图片是来自于这2篇博客里面的,仔细看可以发现右下角有水印--) 系数表示法 一个一元\(n\)次多项式\(f(x)\)可以被表示为:\[f(x) = \sum_{i = 0}^{n}a_{i}x^{i}\] 即用\(i\)次项的系…
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/例题与常用套路[入门] 前置技能 对复数以及复平面有一定的了解 对数论要求了解:逆元,原根,中国剩余定理 对分治有充足的认识 对多项式有一定的认识,并会写 $O(n^2)$ 的高精度乘法 本文概要 多项式定义及基本卷积形式 $Karatsuba$ 乘法 多项式的系数表示与点值表示,以及拉格朗日插值法…