反压(backpressure)是实时计算应用开发中,特别是流式计算中,十分常见的问题.反压意味着数据管道中某个节点成为瓶颈,处理速率跟不上上游发送数据的速率,而需要对上游进行限速.由于实时计算应用通常使用消息队列来进行生产端和消费端的解耦,消费端数据源是 pull-based 的,所以反压通常是从某个节点传导至数据源并降低数据源(比如 Kafka consumer)的摄入速率. 关于 Flink 的反压机制,网上已经有不少博客介绍,中文博客推荐这两篇1.简单来说,Flink 拓扑中每个节点(T…