第一周:深度学习引言(Introduction to Deep Learning) 欢迎(Welcome) 深度学习改变了传统互联网业务,例如如网络搜索和广告.但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康关注. 深度学习做的非常好的一个方面就是读取 X 光图像,到生活中的个性化教育,到精准化农业,甚至到驾驶汽车以及其它一些方面.如果你想要学习深度学习的这些工具,并应用它们来做这些令人窒息的操作,本课程将帮助你做到这一点.当你完成 cousera 上面的这一系列专项课…
Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade? I found this to be really puzzling. A deeper NN is supposed to be more powerful or at least equal to a shallower NN. I…
第四周:深层神经网络(Deep Neural Networks) 4.1 深层神经网络(Deep L-layer neural network) 有一些函数,只有非常深的神经网络能学会,而更浅的模型则办不到. 对于给定的问题很难去提前预测到底需要多深的神经网络,所以先去尝试逻辑回归,尝试一层然后两层隐含层, 然后把隐含层的数量看做是另一个可以自由选择大小的超参数,然后再保留交叉验证数据上 评估,或者用开发集来评估. 一些符号注意: 用 L 表示层数,上图5hidden layers :…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help…
Understand the key computations underlying deep learning, use them to build and train deep neural networks, and apply it to computer vision. 学习目标 See deep neural networks as successive blocks put one after each other Build and train a deep L-layer Ne…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always used Gradient Descent to update the parameters and minimize the cost. In this notebook, you will learn more advanced optimization methods that can spee…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In this assignment you will learn to implement and use gradient checking. You are part of a team working to make mobile payments available globally, and…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that overfitting can be a serious problem, if the training dataset is not big enough. Sure it do…
原ppt下载:pan.baidu.com/s/1nv54p9R,密码:3mty 需深入实践并理解的重要概念: Deep Learning: SoftMax Fuction(输出层归一化函数,与sigmoid相似的激活函数,用于解决分类问题(分类大于2时:sigmoid解决二分类问题)) 1) 2)每个neuron的softmax输出:,其中: DNN(Deep Neural Networks): MSE(Means Square Error,均方误差) / CE(Cross Entropy,交叉…
[论文标题]Wide & Deep Learning for Recommender Systems (DLRS'16) [论文作者] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,Zakaria Haque, Lichan Hong,…