高斯消元法是将矩阵化为上三角矩阵 高斯—若尔当消元法是 选定主元后,将主元化为1,枚举除主元之外的所有行进行消元 即将矩阵化为对角矩阵,这样不用回代 bitset<N>a[N]; int n; void Gauss() { int now=0; ;i<n;++i) { int j=now; while(j<n && !a[j][i]) ++j; ) continue; if(j!=now) swap(a[now],a[j]); ;k<n;++k) if(k!=…
http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include<cstdio> #include<bitset> using namespace std; bitset<>b[]; ]={,-,,,}; ]={,,,,-}; ]; int turn(int i,int j) { )*m+j-; } void gauss() { int…
http://www.lydsy.com/JudgeOnline/problem.php?id=1770 a[i][j] 表示i对j有影响 高斯消元解异或方程组 然后dfs枚举自由元确定最优解 #include<cstdio> #include<algorithm> using namespace std; #define N 36 int n; bool a[N][N]; bool x[N]; int ans=1e9; void gauss() { int j; ;i<n;…
[题意]给定一棵树的灯,按一次x改变与x距离<=1的点的状态,求全0到全1的最少次数.n<=100. [算法]高斯消元解异或方程组 [题解]设f[i]=0/1表示是否按第i个点的按钮,根据每个灯的亮灭可以列出n个方程:a[i][j]表示第i盏灯是否受开关j影响,a[i][n+1]=a[i][i]=1. 由于方案不唯一,所以有自由元,DFS所有自由元得到所有可能答案,比较得到最少次数.DFS记得加最优性剪枝. #include<cstdio> #include<cstring&…
3517: 翻硬币 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 281  Solved: 211[Submit][Status][Discuss] Description 有一个n行n列的棋盘,每个格子上都有一个硬币,且n为偶数.每个硬币要么是正面朝上,要么是反面朝上.每次操作你可以选定一个格子(x,y),然后将第x行和第y列的所有硬币都翻面.求将所有硬币都变成同一个面最少需要的操作数. Input 第一行包含一个正整数n. 接下来n行,每行包含…
题目地址:http://hihocoder.com/contest/hiho57/problem/1 输入 第1..5行:1个长度为6的字符串,表示该行的格子状态,1表示该格子是亮着的,0表示该格子是暗的. 保证一定存在解,且一定存在暗着的格子. 输出 需要按下的格子数量k,表示按下这k个位置后就可以将整个游戏板所有的格子都点亮. 接下来k行,每行一个坐标(x,y),表示需要按下格子(x,y).x坐标较小的先输出,若x相同,则先输出y坐标较小的. 样例输入 001111 011111 11111…
EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10835   Accepted: 6929 Description In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons ea…
题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #include <cstdio> #include <cctype> #include <bitset> #include <algorithm> const int N=1004,M=2004; int n,m; char s[N]; std::bitset&l…
http://www.lydsy.com/JudgeOnline/problem.php?id=1923 #include<cstdio> #include<cstring> #include<iostream> #include<bitset> using namespace std; int n,m; bitset<>a[]; ],s[]; int ans; void gauss() { ,j; ;i<n;i++) { j=now+;…
题目链接:https://vjudge.net/problem/FZU-1704 题意:经典开关问题,求使得灯全0的方案数. 思路:题目保证至少存在一种方案,即方程组一定有解,那么套上高斯消元法的板子,求出自由变元的个数t,方案总数即2t,t可能大于64,要用到高精度计算. AC代码: #include<iostream> #include<string> #include<cstdio> #include<cstdlib> #include<algo…
题目链接:https://vjudge.net/problem/POJ-1222 题意:给定一个5×6的01矩阵,改变一个点的状态时它上下左右包括它自己的状态都会翻转,因为翻转2次等价与没有翻转,那么每个点要么不翻转,要么翻转一次,求最终要怎样翻转可以使得矩阵全0. 思路: 做法1(枚举): 因为数据小,可以枚举第一行的所有可能,共1<<6种,之后的每一行都根据上一行决定,然后通过判断最后一行是否满足条件来判断这种方案是否可行. 做法2(高斯消元法): 为了说的清楚,现在假定矩阵为2×3,比如…
300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案. 合法方案的每个数的质因数的个数的奇偶值异或起来为0. 比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3的个数是奇数为1),3的对应奇偶值为01,于是12*3是完全平方数. 然后异或方程组就是: a11x1+a12x2+...+a1nxn=0 a21x1+a22x2+...+a2nxn=0 ... an1x1+an2x2+...+annxn=0 aij:第i个质数(2000内有303个质数)在第j个数…
第一道高斯消元题目~ 题目:有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开.你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态.对于任意一个开关,最多只能进行一次开关操作.你的任务是,计算有多少种可以达到指定状态的方法.(不计开关操作的顺序)0<=N<=29 我们用样例来模拟一下: 我的高斯消元求解异或方程组模版: int gauss()…
由于每个点的状态受到其自身和周围四个点的影响,所以可以这样建立异或方程组: 引用题解: http://hi.baidu.com/ofeitian/item/9899edce6dc6d3d297445264 题目大意:给你一个5*6的矩阵,矩阵里每一个单元都有一个灯和一个开关,如果按下此开关,那么开关所在位置的那个灯和开关前后左右的灯的状态都会改变(即由亮到不亮或由不亮到亮).给你一个初始的灯的状态,问怎样控制每一个开关使得所有的灯最后全部熄灭(此题保证有唯一解). 解题思路:高斯消元.很显然每个…
题目大意:给出n个数字a[],将a[]分解为质因子(保证分解所得的质因子不大于2000),任选一个或多个质因子,使其乘积为完全平方数.求其方法数. 学长学姐们比赛时做的,当时我一脸懵逼的不会搞……所以第二天上午花了一上午学习了一下线性代数. 题目思路: 任选一个或多个质因子,起乘积为完全数m,因为组成它的均为素数,假设组成m的素数的种类为n,那么这n类素数中每类素数的个数应为偶数. 可设:a[i][j]=0代表第i种素数可在a[j]中分离出的个数为偶数,a[i][j]=1代表第i种素数可在a[j…
SVD分解 只有非方阵才能进行奇异值分解 SVD分解:把矩阵分解为 特征向量矩阵+缩放矩阵+旋转矩阵 定义 设\(A∈R^{m×n}\),且$ rank(A) = r (r > 0) $,则矩阵A的奇异值分解(SVD)可表示为 \(A = UΣV^T = U\begin{bmatrix} \sum &0\\ 0&0 \end{bmatrix}V = σ_1u_1v^T_1+σ_2u_2v^T_2+σ_ru_rv^T_r \qquad s.t.:U 和V都为正交矩阵\) 几何含义 A矩…
题目链接:http://poj.org/problem?id=2947 题意:有n 种装饰物,m 个已知条件,每个已知条件的描述如下: p start enda1, a2......ap (1<= ai <= n)第一行表示从星期 start 到星期 end 一共生产了p 件装饰物 (工作的天数为end - start + 1 + 7*x, 加 7*x 是因为它可能生产很多周),第二行表示这 p 件装饰物的种类(可能出现相同的种类,即 ai = aj).规定每件装饰物至少生产3 天,最多生产9…
强化学习 --- 马尔科夫决策过程(MDP) 1.强化学习介绍 ​ 强化学习任务通常使用马尔可夫决策过程(Markov Decision Process,简称MDP)来描述,具体而言:机器处在一个环境中,每个状态为机器对当前环境的感知:机器只能通过动作来影响环境,当机器执行一个动作后,会使得环境按某种概率转移到另一个状态:同时,环境会根据潜在的奖赏函数反馈给机器一个奖赏.综合而言,强化学习主要包含四个要素:状态.动作.转移概率以及奖赏函数. ​ 根据上图,agent(智能体)在进行某个任务时,首…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5833 题意:给n个数,选择一些数字乘积为平方数的选择方案数. 分析:每一个数字分解质因数.比如4, 6, 10, 15,, , , , 令, 表示选择第i个数字,那么,如果p是平方数,那么每个质因数上的指数为偶数,x1系数为2已经是偶数不考虑.可以转换为异或为0判断偶数,即奇数置为1,偶数置为0,然后n个数字m个质因数的增广矩阵消元看有几个自由变量(取0或1无所谓),答案是2^r - 1(全部都不取…
高斯消元. 自己只能想出来把每一个点看成一个变量,用Xi表示其状态,这样必定TLE,n^2 个变量,再加上3次方的高斯消元(当然,可以用bitset压位). 正解如下: 我们把地图划分成一个个的横条和竖条,对于点i,我们用Li,Ri分别表示横着和竖着穿过它的,显然,对于每一个点,有且仅有一个L块和R块穿过. 得到第一个方程    YLi = sigma(Xp) p属于Li,YRi = sigma(Xp) p属于Ri --> sigma(Xp) xor Yi = 0. 接着我们考虑, Si xor…
经典的开关灯问题. 高斯消元后矩阵对角线B[i][i]若是0,则第i个未知数是自由元(S个),它们可以任意取值,而让非自由元顺应它们,得到2S组解. 枚举自由元取0/1,最终得到最优解. 不知为何正着搜不行. #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define N 36 int n,m; int ans=2147483647; bool B[N][N+1]…
Xor方程组解的个数判定: ——莫涛<高斯消元解Xor方程组> 使用方程个数判定:消去第i个未知数时,都会记录距第i个方程最近的第i位系数不为0の方程是谁,这个的max就是使用方程个数. 使用bitset加速. #include<cstdio> #include<cmath> #include<algorithm> #include<bitset> using namespace std; #define N 1001 #define M 200…
建立方程组消元,结果为2 ^(自由变元的个数) - 1 采用高斯消元求矩阵的秩 方法一: #include<cstdio> #include<iostream> #include<cstdlib> #include<cstring> #include<string> #include<algorithm> #include<map> #include<queue> #include<vector>…
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互质,所以这题就不能用传统解法了= = 其实还有种方法: 先来看只有两个式子的方程组: c≡b1 (mod a1) c≡b2 (mod a2) 变形得c=a1*x+b1,c=a2*x+b2 a1*x-a2*y=b2-b1 可以用扩展欧几里得求出x和y,进而求出c 那么多个式子呢?可以两个两个的迭代求.…
题目链接:http://poj.org/problem?id=1681 题意:还是翻格子的题,但是这里有可能出现自由变元,这时候枚举一下就行..(其实这题直接状压枚举就行) /* ━━━━━┒ギリギリ♂ eye! ┓┏┓┏┓┃キリキリ♂ mind! ┛┗┛┗┛┃\○/ ┓┏┓┏┓┃ / ┛┗┛┗┛┃ノ) ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┃┃┃┃┃┃ ┻┻┻┻┻┻ */ #include <algorithm> #include…
一.Bitmap: Bitmap是Android系统中的图像处理的最重要类之一.用它可以获取图像文件信息,进行图像剪切.旋转.缩放等操作,并可以指定格式保存图像文件. 常用方法: public void recycle() // 回收位图占用的内存空间,把位图标记为Dead public final boolean isRecycled() //判断位图内存是否已释放 public final int getWidth() //获取位图的宽度 public final int getHeight…
题意:给出一个5*6的图,每个灯泡有一个初始状态,1表示亮,0表示灭.每对一个灯泡操作时,会影响周围的灯泡改变亮灭,问如何操作可以使得所有灯泡都关掉. 题解: 这题和上一题几乎完全一样..就是要输出解.. 然后我发现我回代的过程错了TAT 已修改上一题代码和模版 因为回代的过程合!并!了! #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<iost…
题面就是让你解同余方程组(模数不互质) 题解: 先考虑一下两个方程 x=r1 mod(m1) x=r2 mod (m2) 去掉mod x=r1+m1y1   ......1 x=r2+m2y2   ......2 1-2可以得到 m1y1-m2y2=r1-r2 形同ax+by=c形式,可以判无解或者解出一个y1的值 带回1式可得到一个x的解x0=r1-y1a1 通解为x=x0+k*lcm(m1,m2) 即x=x0 mod(lcm(m1,m2)) 令M=lcm(m1,m2) R=x0 所以x满足x…
摘自:http://blog.csdn.net/masibuaa/article/details/8119032 有齐次线性方程AX=0,且rank(A)=r<n时,该方程有无穷多个解, 可以用matlab 中的命令 x=null(A, r)求其基础解系.其中:r=rank(A) 例: A=[ 1 1 1 1 -3 -1 1 1 0 0 0 1 1 0 -2 0 0 -1 0 -1 -2] 用matlab 求Ax=0的基础解析的解程序为: A=[1 1 1 1 -3 -1 1;1 0 0 0 1…
题目链接:http://poj.org/problem?id=1753 题意:同上. 这回翻来翻去要考虑自由变元了,假设返回了自由变元数量,则需要枚举自由变元. /* ━━━━━┒ギリギリ♂ eye! ┓┏┓┏┓┃キリキリ♂ mind! ┛┗┛┗┛┃\○/ ┓┏┓┏┓┃ / ┛┗┛┗┛┃ノ) ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┛┗┛┗┛┃ ┓┏┓┏┓┃ ┃┃┃┃┃┃ ┻┻┻┻┻┻ */ #include <algorithm> #include <io…