VC++平台上的内存对齐操作】的更多相关文章

我们知道当内存的边界正好对齐在相应机器字长边界上时,CPU的执行效率最高,为了保证效率,在VC++平台上内存对齐都是默认打开的,在32位机器上内存对齐的边界为4字节:比如看如下的代码: struct MyStruct { int i; char c; }; int _tmain(int argc, _TCHAR* argv[]) { cout<<sizeof(MyStruct)<<endl; return 0; } 此时输出的结果并不是sizeof(int) + sizeof(ch…
最近写个小程序,出现bus error! int main(void) { /** * char :1个字节 * char*(即指针变量): 4个字节(32位的寻址空间是2^32, 即32个bit,也就是4个字节.同理64位编译器) * char 和 char*占用字节不一样,所以 声明char *a = "hello,world! my name is cj", 后面会出现bus error, 即内存不对齐, * 其实在linux报段错误才对! 是因为声明为字符串字面量 后不能 对字…
内存对齐,memory alignment.为了提高程序的性能,数据结构(尤其是栈)应该尽可能地在自然边界上对齐.原因在于,为了访问未对齐的内存,处理器需要作两次内存访问:然而,对齐的内存访问仅需要一次访问.内存对齐一般讲就是cpu access memory的效率(提高运行速度)和准确性(在一些条件下,如果没有对齐会导致数据不同步现象).依赖cpu,平台和编译器的不同.一些cpu要求较高(这句话说的不准确,但是确实依赖cpu的不同),而有些平台已经优化内存对齐问题,不同编译器的对齐模数不同.总…
转自:http://www.cnblogs.com/qwcbeyond/archive/2012/05/08/2490897.html 32位机一般默认4字节对齐(32位机机器字长4字节),64位机一般默认8字节对齐(64位机机器字长8字节) 1.先看下面的例子:struct A{   char c1;   int i;   short s;   int j;}a; struct B{   int i;   int j;     short s;   char c1;}b; 结构A没有遵守字节对…
转自:http://blog.chinaunix.net/uid-25909619-id-3032209.html 当在C中定义了一个结构类型时,它的大小是否等于各字段(field)大小之和?编译器将如何在内存中放置这些字段?ANSI C对结构体的内存布局有什么要求?而我们的程序又能否依赖这种布局?这些问题或许对不少朋友来说还有点模糊,那么本文就试着探究它们背后的秘密. 首先,至少有一点可以肯定,那就是ANSI C保证结构体中各字段在内存中出现的位置是随它们的声明顺序依次递增的,并且第一个字段的…
当在C中定义了一个结构类型时,它的大小是否等于各字段(field)大小之和?编译器将如何在内存中放置这些字段?ANSI C对结构体的内存布局有什么要求?而我们的程序又能否依赖这种布局?这些问题或许对不少朋友来说还有点模糊,那么本文就试着探究它们背后的秘密. 首先,至少有一点可以肯定,那就是ANSI C保证结构体中各字段在内存中出现的位置是随它们的声明顺序依次递增的,并且第一个字段的首地址等于整个结构体实例的首地址.比如有这样一个结构体:    struct vector{int x,y,z;}…
这些问题或许对不少朋友来说还有点模糊,那么本文就试着探究它们背后的秘密. 首先,至少有一点可以肯定,那就是ANSI C保证结构体中各字段在内存中出现的位置是随它们的声明顺序依次递增的,并且第一个字段的首地址等于整个结构体实例的首地址.比如有这样一个结构体:   struct vector{int x,y,z;} s;   int *p,*q,*r;   struct vector *ps;   p = &s.x;   q = &s.y;   r = &s.z;   ps = &am…
内存对齐理论 a.数据的对齐(alignment) 指数据的地址和由硬件条件决定的内存块大小之间的关系.一个变量的地址是它大小的倍数的时候,这就叫做自然对齐(naturally aligned). 例如,对于一个32bit的变量,如果它的地址是4的倍数(地址的低两位是0--备注1),那么这就是自然对齐. 对齐的规则是由硬件引起的.一些体系的计算机在数据对齐这方面有着很严格的要求.在一些系统上,一个不对齐的数据的载入可能会引起进程的陷入. 在另外一些系统,对不对齐的数据的访问是安全的,但却会引起性…
本篇随笔讨论一个比较冷门的知识,继承结构中内存对齐的问题,如今内存越来越大也越来越便宜,大部分人都已经不再关注内存对齐的问题了.但是作为一个有追求的技术人员,实现功能永远都是最基本的要求,把代码优化到自己想要的样子才能从中找到真正的愉悦感.这便是我们追求细节的意义. 声明:以下例子,以x86_64 64bit编译器编译的结果作为参考,32位编译器会有不同结果,这里不讨论. 目录 引子-内存对齐示例与规则 进阶-继承体系中的内存对齐 引子-内存对齐示例与规则: 讨论内存对齐,就要牵涉到#pragm…
struct内存对齐:gcc与VC的差别 内存对齐是编译器为了便于CPU快速访问而采用的一项技术,对于不同的编译器有不同的处理方法. Win32平台下的微软VC编译器在默认情况下采用如下的对齐规则: 任何基本数据类型T的对齐模数就是T的大小,即sizeof(T).比如对于double类型(8字节),就要求该类型数据的地址总是8的倍数,而char类型数据(1字节)则可以从任何一个地址开始.Linux下的GCC奉行的是另外一套规则:任何2字节大小的数据类型(比如short)的对齐模数是2,而其它所有…