AI_神经网络监督学习】的更多相关文章

神经网络的神奇之处在哪? 所有神经网络创造出来的价值,都是由一种机器学习,称之为监督学习, 下面这些例子神经网络效果拔群,通过深度学习获利最多的是在线广告 技术的进步来源于计算机视觉和深度学习 例如: 预测房价:输入房子的一些特性x,就能输出或者预测价格y 在线广告: 给网站输入广告信息,网站会考虑是否给你看这个广告,向用户展现,最有可能用户会点开的广告,这说明了什么?有了一种能力,向用户展现广告用户最有可能点开的能力,钱也随之而来 计算机视觉:通过深度学习,你输入一个图形,然后向输出一个指数,…
大部分介绍神经网络的文章中概念性的东西太多,而且夹杂着很多数学公式,读起来让人头疼,尤其没什么基础的人完全get不到作者想要表达的思想.本篇文章尝试零公式(但有少量数学知识)说清楚什么是神经网络,并且举例来说明神经网络能干什么.另外一些文章喜欢举“根据历史交易数据预测房子价值”或者“根据历史数据来预测未来几天是否下雨”的例子来引入“机器学习/深度学习/神经网络/监督学习”的主题,并介绍他们的作用,这种例子的样本(输入X输出Y)都是数值,数字到数字的映射,简单易懂,但是现实应用中还有很多场景并非如…
神经网络最基本的元素与计算流程: 基本的组网原则: 神经网络监督学习的基本步骤: 初始化权值系数 提取一个样本输入NN,比较网络输出与正确输出的误差 调整权值系数,以减少上面误差——调整的方法对应不同的学习规则 重复二三步,直到所有的样本遍历完毕或者误差在可以容忍的范围内 Delta规则:(一种更新权值系数的规则) 基于sigmoid函数的Delta规则:优势,便于用于分类问题——激活函数选择 几种常见权值更新策略: 三种更新策略下的代码演示 function W = DeltaSGD(W,X,…
MNIST 卷积神经网络.https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py .TensorFlow搭建卷积神经网络(CNN)模型,训练MNIST数据集. 构建模型. 定义输入数据,预处理数据.读取数据MNIST,得到训练集图片.标记矩阵,测试集图片标记矩阵.trX.trY.teX.teY 数据矩阵表现.trX.teX形状变为[-1,28,28,1],-1 不考虑输入图片数量,28x…
接下来一段时间开启脉冲神经网络模型的探索之旅.脉冲神经网络有更强的生物学基础,尽可能地模拟生物神经元之间的连接和通信方式.其潜在能力较强,值得踏进一步探索. 构建脉冲神经网络模型,至少需要考虑三点:1. 外界刺激编码2. 构建神经元模型3. 制定学习规则 外界刺激的编码方式主要有Rate Coding和Temporal Coding等,这里不在细述.而Hodgkin和Huxley两位研究员早在1952年就提出了第一个神经元模型:HH[1].随后陆续有各种神经元模型被提出,其中具有代表性的为Izh…
# 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #模型训练 # 设置超参数 learning_rate =…
[TOC] 马里奥AI实现方式探索 --神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后也已经典的马里奥形象出现.平时我们都是人来玩马里奥游戏,能否可以让马里奥智能的自己闯关个呢?OK,利用人工智能的相关算法来进行自动化通关一直是一个热门的话题,最近最火的相关东东就是传说中的alphaGo啦.而在游戏的自动化测试当中,这种算法也是非常实用的,可以大量的减少测试人力成本. 首先,对于实现马里奥A…
一.人工神经元模型 1.突触权值(连接权) 每一个突触都由其权值作为特征表征,各个神经元之间的连接强度由突触权值来表示.与神经元相连的突触上,连接的输入信号通过权值的加权进入神经元的求和单元. 2.求和单元 求和单元用于求取各输入信号的突触加权和,这个操作构成一个线性组合器. 3.激活函数 激活函数起非线性映射的作用,并用来限制神经元输出振幅.激活函数也称限制函数,或传输函数.通常一个神经元输出的正常范围在[0, 1]区间或[−1, 1]区间. 4.外部偏置 此外,神经元模型还包括一个外部偏置,…
本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载,原文. 选自 Open AI 作者:ANDREJ KARPATHY, PIETER ABBEEL, GREG BROCKMAN, PETER CHEN, VICKI CHEUNG, ROCKY DUAN, IAN GOODFELLOW 等 机器之心编译 参与:孙睿.吴攀 引言:这篇博文介绍了 OpenAI 的首批研究结果.研究人员分别从事的四个研究项目贯穿了一个共同的主题:在机器学习中提升或使用生成模型,无监督学…
1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1.1.3    如何选择K值 1.1.4    Spark MLlib 实现 k-means 算法 1.2    Mixture of Gaussians and the EM algorithm 1.3    The EM Algorithm 1.4    Principal Components…