http://blog.csdn.net/pipisorry/article/details/44783647 机器学习Machine Learning - Andrew NG courses学习笔记 Anomaly Detection异常检測 Problem Motivation问题的动机 Anomaly detection example Applycation of anomaly detection Note:for Frauddetection: users behavior exam…
自Andrew Ng的machine learning课程. 目录: Problem Motivation Gaussian Distribution Algorithm Developing and Evaluating an Anomaly Detection System Anomaly Detection vs. Supervised Learning Choosing What Features to Use Multivariate Gaussian Distribution Ano…
Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法的一个常见应用.这种算法虽然主要用于无监督学习问题,但从某些角度看,它又类似于一些监督学习问题.举例: 当飞机引擎从生产线上流出时需要进行QA(质量控制测试),数据集包含引擎的一些特征变量,比如运转时产生的热量,或者振动等.当有一个新的飞机引擎从生产线上流出,它具有特征变量 xtest .异常检测问…
估计P(x)的分布--密度估计 我们有m个样本,每个样本有n个特征值,每个特征都分别服从不同的高斯分布,上图中的公式是在假设每个特征都独立的情况下,实际无论每个特征是否独立,这个公式的效果都不错.连乘的公式表达如上图所示. 估计p(x)的分布问题被称为密度估计问题(density estimation) 异常检测算法 1>找出一些能观察出异常行为的特征,尽可能尝试选择能够描述数据相关属性的特征. 2> 根据样本估计出参数的值,有n个特征每个特征都服从不同的正态分布,有不同的u和σ2,分别对这些…
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcement learning Structured prediction Feature engineering Feature learning Online learning Semi-supervised learning Unsupervised learning Learning to rank…
这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可见,如购物推荐.影视推荐等.课程链接为:https://www.coursera.org/course/ml (一)异常检测(Anomaly Detection) 举个栗子: 我们有一些飞机发动机特征的sample:{x(1),x(2),...,x(m)},对于一个新的样本xtest,那么它是异常数…
十五.异常检测(Anomaly Detection) 15.1 问题的动机 参考文档: 15 - 1 - Problem Motivation (8 min).mkv 在接下来的一系列视频中,我将向大家介绍异常检测(Anomaly detection)问题.这是机 器学习算法的一个常见应用.这种算法的一个有趣之处在于:它虽然主要用于非监督学习问 题,但从某些角度看,它又类似于一些监督学习问题. 什么是异常检测呢?为了解释这个概念,让我举一个例子吧: 假想你是一个飞机引擎制造商,当你生产的飞机引擎…
Anomaly Detection Problem motivation: 首先描写叙述异常检測的样例:飞机发动机异常检測 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaHVydXp1bg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt=""> 直观上发现,假设新的发动机在中间,我们非常大可能觉得是OK的.假设偏离非…
这里有个2015年的综述文章,概括的比较好,各种技术的适用场景.  https://iwringer.wordpress.com/2015/11/17/anomaly-detection-concepts-and-techniques/ 其中 Clustering 技术可以使用 K-Means, Gaussian Mixture Model. GMM 模型可以参考这个很棒的文章 https://colab.research.google.com/github/jakevdp/PythonData…
紧接着上一篇博客的讲 第二步是识别部分 人脸识别 把上一阶段检測处理得到的人脸图像与数据库中的已知 人脸进行比对,判定人脸相应的人是谁(此处以白色文本显示). 人脸预处理 如今你已经得到一张人脸,你能够使用那张人脸图片进行人脸识别. 然而,假如你尝试这样简单地从一张普通图片直接进行人脸识别的话,你将会至少损失10%的准确率! 在一个人脸识别系统中,应用多种预处理技术对将要识别的图片进行标准化处理是极其重要的.多数人脸识别算法对光照条件十分敏感,所以假如在暗室训练,在明亮的房间就可能不会被识别出来…
100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45,  Gaussian Process Basics, David MacKay, 8 comments 7799 views, 3:08:32, Introduction to Machine Learning, Iain Murray 16092 views, 1:28:05, Introduction to Support Vector Machines, C…
A sample network anomaly detection project Suppose we wanted to detect network anomalies with the understanding that an anomaly might point to hardware failure, application failure, or an intrusion. What our model will show us The RNN will train on a…
1. Algorithm 2. evaluating an anomaly detection system 3. anomaly detection vs supervised learning 4. choose what features to use. - choose the features xi which hist(xi) is like gaussian shape, or transfer xi such as log(xi+c) to make hist(xi) to be…
版权声明:本文为博主原创文章,转载或者引用请务必注明作者和出处,尊重原创,谢谢合作 https://blog.csdn.net/u012328159/article/details/51462942 异常检测(anomaly detection)   关于异常检测(anomaly detection)本文主要介绍一下几个方面: 异常检测定义及应用领域 常见的异常检测算法 高斯分布(正态分布) 异常检测算法 评估异常检测算法 异常检测VS监督学习 如何设计选择features 多元高斯分布 多元高…
今天同学让我帮忙制作一个人脸表情识别的样本库,当中主要是对人脸进行裁剪,这里用到了一个相对较新的Matlab人脸检測方法Face Parts Detection.网上百度了一下发现关于Matlab人脸检測的代码和资源并不多.故此专门撰写一篇博客来具体介绍这个人脸检測方法的用途. 一.下载相应的工具包 首先下载相应的工具包.matlab最方便的地方莫过于此了.直接下载.配置简单.而且能够查看源代码,这里给出相应的工具包下载地址:Face Parts Detection工具包. 点击"Downloa…
异常检测,广泛用于欺诈检测(例如“此信用卡被盗?”). 给定大量的数据点,我们有时可能想要找出哪些与平均值有显着差异. 例如,在制造中,我们可能想要检测缺陷或异常. 我们展示了如何使用高斯分布来建模数据集,以及如何将模型用于异常检测. 我们还将涵盖推荐系统,这些系统由亚马逊,Netflix和苹果等公司用于向其用户推荐产品. 推荐系统查看不同用户和不同产品之间的活动模式以产生这些建议. 在这些课程中,我们介绍推荐算法,如协同过滤算法和低秩矩阵分解. Problem Motivation 上面是一个…
主要内容: 一.模型介绍 二.算法过程 三.算法性能评估及ε(threshold)的选择 四.Anomaly detection vs Supervised learning 五.Multivariate Gaussian 一.模型介绍 如何检测一个成品是否异常? 假设红交叉表示正常的样本点,如果抽取到的成品其位于正常样本点的范围之内,则可认为其正常:如果成品的位置远离正常样本点,则可认为其出现异常. 为了更加明确“正常样本点”的范围,我们添加圈圈以划定区域,如: 此时,选择一个threshol…
异常检测(Anomaly Detection) 问题的动机 (Problem Motivation) 异常检测(Anomaly detection)问题是机器学习算法中的一个常见应用.这种算法的有趣之处在于:它虽然主要用于非监督学习问题,但从某些角度看,它又和监督学习问题非常类似. 举例说明什么是异常检测: 假想你是一个飞机引擎制造商,当你生产的飞机引擎从生产线上流出时,你需要进行QA(质量控制测试),而作为这个测试的一部分,你测量了飞机引擎的一些特征变量,比如引擎运转时产生的热量,或者引擎的振…
记得在做电商运营初期,每每为我们频道的促销活动锁取得的“超高”销售额感动,但后来随着工作的深入,我越来越觉得这里面水很深.商家运营.品类运营不断的通过刷单来获取其所需,或是商品搜索排名,或是某种kpi指标,但这些所谓的“脏数据”,却妨碍了平台运营者对于真实数据的分析和促销效果的评估.今天我们讨论一种非监督学习算法(Unsupervised Learning Algorithm),试图在真实数据中,找出并标注异常数据. 该算法是基于高斯分布的异常检测算法(Anomaly Detection Alg…
一.如何构建Anomaly Detection模型? 二.如何评估Anomaly Detection系统? 1)将样本分为6:2:2比例 2)利用交叉验证集计算出F1值,可以用F1值选取概率阈值ξ,选取使得F1值最大的那个ξ. 3)同时也可以根据训练集.交叉验证集.测试集来同样选取使用哪些特征变量更好.方法就是不断更换特征组合构建模型,利用交叉验证集计算F1值,并看测试集的效果等等. 三.什么时候用异常数据检测法,什么时候用有监督的分类方法? 1)一般来讲,当样本中有大量正常样本数据,而仅仅有少…
异常检测(Anomaly Detection) 给定数据集…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
[原创]Liu_LongPo 转载请注明出处 [CSDN]http://blog.csdn.net/llp1992 近期在关注 crowd scene方面的东西.由于某些原因须要在crowd scene上实现 anomaly detection.所以看到了这篇论文,该论文是眼下在crowd scene中进行abnormal detection做的最好的,记录下笔记当做学习资料. 传统的 anomaly detection中,非常多突发事件监測都是基于motion information的,这样就…
转载:http://www.jianshu.com/p/b73b6953e849 该资源的github地址:Qix <Statistical foundations of machine learning> 介绍:<机器学习的统计基础>在线版,该手册希望在理论与实践之间找到平衡点,各主要内容都伴有实际例子及数据,书中的例子程序都是用R语言编写的. <A Deep Learning Tutorial: From Perceptrons to Deep Networks>…
数据集中的异常数据通常被成为异常点.离群点或孤立点等,典型特征是这些数据的特征或规则与大多数数据不一致,呈现出“异常”的特点,而检测这些数据的方法被称为异常检测. 异常数据根据原始数据集的不同可以分为离群点检测和新奇检测: 离群点检测(Outlier Detection) 大多数情况我们定义的异常数据都属于离群点检测,对这些数据训练完之后再在新的数据集中寻找异常点. 新奇检测(Novelty Detection) 所谓新奇检测是识别新的或未知数据模式和规律的检测方法,这些规律和只是在已有机器学习…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset by Jason Brownlee on August 19, 2015 in Machine Learning Process Has this happened to you? You are working on your dataset. You create a classification model and get 90% accuracy…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
Week1: Machine Learning: A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. Supervised Learning:We alr…