Spark Streaming的编程模型】的更多相关文章

Spark Streaming的编程和Spark的编程如出一辙,对于编程的理解也非常类似.对于Spark来说,编程就是对于RDD的操作:而对于Spark Streaming来说,就是对DStream的操作.下面将通过一个大家熟悉的WordCount的例子来说明Spark Streaming中的输入操作.转换操作和输出操作. Spark Streaming初始化:在开始进行DStream操作之前,需要对Spark Streaming进行初始化生成StreamingContext.参数中比较重要的是…
http://blog.csdn.net/pipisorry/article/details/50931274 spark基本概念 Spark一种与 Hadoop 相似的通用的集群计算框架,通过将大量数据集计算任务分配到多台计算机上,在性能和迭代计算上很有看点,提供高效内存计算,现在是Apache孵化的顶级项目. Spark 由加州大学伯克利分校 AMP 实验室 (Algorithms, Machines, and People Lab) 开发,可用来构建大型的.低延迟的数据分析应用程序.Spa…
本文测试的Spark版本是1.3.1 Spark Streaming编程模型: 第一步: 需要一个StreamingContext对象,该对象是Spark Streaming操作的入口 ,而构建一个StreamingContext对象需要两个参数: 1.SparkConf对象:该对象是配置Spark 程序设置的,例如集群的Master节点,程序名等信息 2.Seconds对象:该对象设置了StreamingContext多久读取一次数据流 第二步: 构建好入口对象之后,直接调用该入口的方法读取各…
1. Spark中的基本概念 Application:基于Spark的用户程序,包含了一个driver program和集群中多个executor. Driver Program:运行Application的main()函数并创建SparkContext.通常SparkContext代表driver program. Executor:为某Application运行在worker node上的一个进程.该进程负责运行Task,并负责将数据存在内存或者磁盘 上.每个Application都有自己独…
Dataflow编程模型和spark streaming结合 主要介绍一下Dataflow编程模型的基本思想,后面再简单比较一下Spark  streaming的编程模型 == 是什么 == 为用户提供以流式或批量模式处理海量数据的能力,该服务的编程接口模型(或者说计算框架)也就是下面要讨论的dataflow model 流式计算框架处理框架很多,也有大量的模型/框架号称能较好的处理流式和批量计算场景,比如Lambda模型,比如Spark等等,那么dataflow模型有什么特别的呢? 这就要要从…
一.spark streaming简介 Streaming是一种数据传输技术,它把客户机收到的数据变成一个稳定连续的流,源源不断的输出,使用户听到的声音和图像十分稳定,而用户在整个文件传输完成开始前就可以浏览文件. 常见的流式计算框架: l Apache storm l Spark streaming l Apache samza 上述三种实时计算系统都是开源分布式系统,具有低延迟,可扩展和容错性诸多优点,他们的共同特色在于:允许你在运行数据流代码时,将任务分配到一系列具有容错能力的计算机上并行…
在大数据的各种框架中,hadoop无疑是大数据的主流,但是随着电商企业的发展,hadoop只适用于一些离线数据的处理,无法应对一些实时数据的处理分析,我们需要一些实时计算框架来分析数据.因此出现了很多流式实时计算框架,比如Storm,Spark Streaming,Samaz等框架,本文主要讲解Spark Streaming的工作原理以及如何使用. 一.流式计算 1.什么是流? Streaming:是一种数据传送技术,它把客户机收到的数据变成一个稳定连续的流,源源不断地送出,使用户听到的声音或看…
原文链接:Spark Streaming:大规模流式数据处理的新贵 摘要:Spark Streaming是大规模流式数据处理的新贵,将流式计算分解成一系列短小的批处理作业.本文阐释了Spark Streaming的架构及编程模型,并结合实践对其核心技术进行了深入的剖析,给出了具体的应用场景及优化方案. 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处…
转自:http://www.csdn.net/article/2014-01-28/2818282-Spark-Streaming-big-data 提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可以分为如以下三个类型. 复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间. 基于历史数据的交互式…
一.        场景 ◆ Spark[4]: Scope:  a MapReduce-like cluster computing framework designed for low-latency iterativejobs and interactive use from an interpreter(在大规模的特定数据集上的迭代运算或重复查询检索) 正如其目标scope,Spark适用于需要多次操作特定数据集的应用场合.需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小…