题目链接 洛谷P4233 题解 我们只需求出总的哈密顿回路个数和总的强联通竞赛图个数 对于每条哈密顿回路,我们统计其贡献 一条哈密顿回路就是一个圆排列,有\(\frac{n!}{n}\)种,剩余边随便连 所以总的贡献为 \[(n - 1)!2^{{n \choose 2} - n}\] 我们只需求出总的强联通竞赛图的个数 设\(g[n]\)表示\(n\)个点竞赛图个数,\(f[n]\)表示强联通竞赛图个数 那么有 \[g[n] = \sum\limits_{i = 1}^{n}{n \choos…
洛谷P4238 多项式求逆:http://blog.miskcoo.com/2015/05/polynomial-inverse 注意:直接在点值表达下做$B(x) \equiv 2B'(x) - A(x)B'^2(x) \pmod {x^n}$是可以的,但是一定要注意,这一步中有一个长度为n的和两个长度为(n/2)的多项式相乘,因此要在DFT前就扩展FFT点值表达的“长度”到2n,否则会出错(调了1.5个小时) 备份 版本1: #prag\ ma GCC optimize() #include…
传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x)A(x)且A(x)B(x)≡1mod  xnA(x)B(x)≡1 \mod x^nA(x)B(x)≡1modxn,那么我们称B(x)为A(x)A(x)A(x)在模xnx^nxn意义下的逆元,简单记作A−1(x)A^{−1}(x)A−1(x) 求法: n…
题目大意:多项式求逆 题解:$ A^{-1}(x) = (2 - B(x) * A(x)) \times B(x) \pmod{x^n} $ ($B(x)$ 为$A(x)$在$x^{\lceil \dfrac{n}{2} \rceil}$下的逆元) 卡点:无 C++ Code: #include <cstdio> #define int long long #define maxn 262144 using namespace std; const int mod = 998244353; c…
传送门 咱用的是拆系数\(FFT\)因为咱真的不会三模数\(NTT\)-- 简单来说就是把每一次多项式乘法都改成拆系数\(FFT\)就行了 如果您还不会多项式求逆的左转->这里 顺带一提,因为求逆的时候要乘两次,两次分开乘,否则会像咱一样炸精度 //minamoto #include<bits/stdc++.h> #define R register #define ll long long #define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i…
传送门 学习了一下大佬的->这里 已知多项式$A(x)$,若存在$A(x)B(x)\equiv 1\pmod{x^n}$ 则称$B(x)$为$A(x)$在模$x^n$下的逆元,记做$A^{-1}(x)$ 具体的来说的话,就是两个多项式$A,B$相乘模$x^n$之后,所有次数大于等于$n$的项都没了,那么只有在剩下的项相乘之后未知数项全被消掉只留下一个常数项$1$时,$B$才是$A$的逆元 然后为什么要有模$x^n$的限制呢?因为没有这个限制的话,$B$可能有无穷多项 然后我们考虑如何计算$B(x…
传送门 人傻常数大.jpg 因为求逆的时候没清零结果调了几个小时-- 前置芝士 多项式除法,多项式求逆 什么?你不会?左转你谷模板区,包教包会 题解 首先我们要知道一个结论\[f(x_0)\equiv f(x)\pmod{(x-x_0)}\] 其中\(x_0\)为一个常量,\(f(x_0)\)也为一个常量 证明如下,设\(f(x)=g(x)(x-x_0)+A\),也就是说\(A\)是\(f(x)\)对\((x-x_0)\)这个多项式取模之后的结果 因为\((x-x_0)\)的最高次项为\(1\)…
题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个点的无向图个数,这个方案是\(2^{\frac{i(i-1)}{2}}\)(也就是考虑每条边选不选) 考虑如何得到\(g\) \[g(n) = \sum_{i=0}^n C_{n-1}^{i-1}f(i) g(n-i)\] 直接将\(2^{\frac{n(n-1)}{2}}\)带入然后化简一下可以得…
前言 多项式求逆还是爽的一批 Solution 考虑分治求解这个问题. 直接每一次NTT一下就好了. 代码实现 #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<algorithm> #include<queue> #include<iostream> using namespace std; #define…
传送门 我是用多项式求逆做的因为分治FFT看不懂…… upd:分治FFT的看这里 话说这个万恶的生成函数到底是什么东西…… 我们令$F(x)=\sum_{i=0}^\infty f_ix^i,G(x)=\sum_{i=0}^\infty g_ix^i$,且$g_0=0$ 这俩玩意儿似乎就是$f(x)$和$g(x)$的生成函数 那么就有$$F(x)G(x)=\sum_{i=0}^\infty x^i\sum_{j+k=i}f_jg_k$$ 然后根据题目,有$$f_i=\sum_{j=1}^if_{…
题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以只做到 2*(r-l),能快一倍. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long…
设f[i]为i个积木能堆出来的种类,g[i]为i个积木能堆出来的种类和 \[ f[n]=\sum_{i=1}^{n}C_{n}^{i}g[n-i] \] \[ g[n]=\sum_{i=1}^{n}C_{n}^{i}f[n-i]+g[n] \] 理解就是选出包含最后一个的块,然后剩下的按照之前的拼 化简,设s为\( \frac{1}{n!} \),G为\( \frac{g[n]}{n!} \),F为\( \frac{fn]}{n!} \),把组合数拆开,变成卷积形式,然后化简就变成 \[ F=\…
传送门 注意到总共有\(\frac{n!}{n}\)条本质不同的哈密顿回路,每一条哈密顿回路恰好会出现在\(2^{\binom{n}{2} - n}\)个图中,所以我们实际上要算的是强连通有向竞赛图的数量. 设\(f_i\)表示点数为\(i\)的强连通竞赛图数,转移考虑用总数\(2^\binom{i}{2}\)减去不强连通的图数量.如果竞赛图不强连通,我们可以枚举拓扑序最靠后的一个强连通子图,如果它的大小为\(j\),那么剩下\(i-j\)个点之间的边可以任意连,但是这\(i-j\)个和这\(j…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
正题 题目链接:https://www.luogu.com.cn/problem/P4233 题目大意 随机选择一条有哈密顿回路的\(n\)个点的竞赛图,求选出图的哈密顿回路的期望个数. 对于每个\(n\in[1,N]\)求答案. \(1\leq N\leq 10^5\) 解题思路 竟然自己推出来了泪目( Ĭ ^ Ĭ ) 如果是统计所以的哈密顿回路个数是一个很简单的题目,我们可以求出\(n\)的一个圆排列表示一条回路,然后剩下的边随便排即可.也就是\((n-1)!\times 2^{\frac{…
思路 题目要求求的是哈密顿回路的期望数量,实际上就是哈密顿回路的总数/有哈密顿回路的竞赛图的数量 n个点的所有竞赛图中哈密顿回路的总数为 \[ (n-1)! 2^{\frac{n(n-1)}{2}-n} \] 每个哈密顿回路可以看成一个环,则经过的n个节点就是长度为n的一个排列,排列总数为\(n!\) 个,每个回路被计数了n次,有\((n-1)!\)种,剩下的\(\frac{n(n-1)}{2}-n\)条边随便连,有\(2^{\frac{(n-1)n}{2}-n}\)种 而强连通竞赛图中必有一个…
题面 传送门 题解 考虑分治 假设我们已经求出\(A'^2\equiv B\pmod{x^n}\),考虑如何计算出\(A^2\equiv B\pmod{x^{2n}}\) 首先肯定存在\(A^2\equiv B\pmod{x^n}\) 然后两式相减\[A'^2-A^2\equiv 0\pmod{x^n}\] \[(A'-A)(A'+A)\equiv 0\pmod{x^n}\] 我们假设\(A'-A\equiv 0\pmod{x^n}\),然后两边平方\[A'^2-2A'A+A^2\equiv 0…
一.多项式求逆 给定一个多项式 \(F(x)\),请求出一个多项式 \(G(x)\), 满足 \(F(x) * G(x) \equiv 1 ( \mathrm{mod\:} x^n )\).系数对 \(998244353\)取模. 考虑递归求解,当\(F\)的最高次为\(0\)时,\(G_0=F_0^{-1}\) 假设我们知道了\(F(x)\)在模\(x^{\left \lceil \frac{n}{2}\right \rceil}\)意义下的逆元\(G'\) 那么\(F∗G′≡1(\mathr…
[BZOJ3625/CF438E]小朋友和二叉树(多项式求逆,多项式开方) 题面 BZOJ CodeForces 大致题意: 对于每个数出现的次数对应的多项式\(A(x)\) 求\[f(x)=\frac{2}{\sqrt{-4A(x)+1}+1}\] 题解 多项式开方+多项式求逆模板题 我之前写的多项式求逆很丑,常数大的惊人 成功拿到洛谷模板题倒数第一的速度 于是,我学习了一波Gay神的写法 写了一下这道题目 具体的细节暂时不写了,以后肯定有机会的写的(这点我可以保证) #include<ios…
[题意]求n个点的带标号无向连通图个数 mod 1004535809.n<=130000. [算法]动态规划+多项式求逆 [题解]设$g_n$表示n个点的无向图个数,那么显然 $$g_n=2^{\frac{n(n-1)}{2}}$$ 设$f_n$表示n个点的无向连通图个数,通过枚举1号点所属连通块大小很容易得到$g_n$的等式: $$g_n=\sum_{i=1}^{n}\binom{n-1}{i-1}*f_i*g_{n-i}$$ 特别的,$g_0=1$. 将组合数拆分一下,即可得到: $$\fr…
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治fft 注意过程中把r-l+1当做次数界就可以了,因为其中一个向量是[l,mid],我们只需要[mid+1,r]的结果. 多项式求逆 变成了 \[ A(x) = \frac{f_0}{1-B(x)} \] 的形式 要用拆系数fft,直接把之前的代码复制上就可以啦 #include <iostream…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 Bell数 \(B(n)=\sum\limits_{i=…
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\frac{2}{\sqrt{1-4h(x)}+1}$ 于是我们需要多项式开方和多项式求逆. 多项式求逆: 求$B(x)$,使得$A(x)*B(x)=1\;(mod\;x^m)$ 考虑倍增. 假设我们已知$A(x)*B(x)=1\;(mod\;x^m)$,要求$C(x)$,使得$A(x)*C(x)=1\;…
前言 emmm暂无 多项式求逆目的 顾名思义 就是求出一个多项式的摸xn时的逆 给定一个多项式F(x),请求出一个多项式G(x),满足F(x)∗G(x)≡1(modxn),系数对998244353取模. 多项式求逆主要思路 我们考虑用递推的做法 假设我们当前已知F(x)H(x)=1(mod xi/2) 要求的是F(x)Q(x)=1(mod xi) 因为F(x)Q(x)=1(mod xi) 所以F(x)Q(x)=1(mod xi/2) 可得F(x)(Q(x)-H(x))=0(mod xi/2) 显…
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减去不可行的方案数就行了 (容斥) 令 \(f_i\) 为有 \(i\) 个点的无向有标号连通图个数 . 考虑 \(1\) 号点的联通块大小 , 联通块外的点之间边任意 但 不能与 \(1\) 有间接联系 . 那么就有 \[\displaystyle f_i = 2^{\binom i 2} - \s…
传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制\(j\)种颜色恰好出现\(S\)次,其他颜色随意染的方案数.可以通过生成函数知道 \(\begin{align*} c_j &= \binom{m}{j} n! [x^n] (\frac{x^k}{k!})^j (\sum\limits_{i=0}^\infty \frac{x^i}{i!})^{m…
题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\}\)中,我们的小朋友就会将其称作神犇的.并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和. 给出一个整数\(m\),你能对于任意的\(s(1\leq s\leq m)\)计算出权值为\(s\)的神犇二叉树的个数吗? 我们只需要知道答案关于\(998244353\)取模后的值. \(n,m\…
题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 把一棵子树替换成根的的左子树或右子树. 定义\(k\)连树为一棵只有恰好\(k\)个叶子的满二叉树,如果某个节点有一个右孩子,那么这个右孩子一定是一个叶子. 对于给定的\(k\)和\(n\),对于所有在\(1\)到\(n\)之间的\(i\),你需要求出所有叶子节点恰好为\(i\),且不包含\(k\…
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\frac{i(i-1)}{2}} \] \[ \begin{align} g_i&=f_i-\sum_{j=1}^{i-1}\binom{n-1}{j-1}g_jf_{i-j}\\ &=f_i-(i-1)!\sum_{j=1}^{i-1}\frac{g_j}{(j-1)!}\frac{f_{i-…
Description 求\(~n~\)个点组成的有标号无向连通图的个数.\(~1 \leq n \leq 13 \times 10 ^ 4~\). Solution 这道题的弱化版是poj1737, 其中\(n \leq 50\), 先来解决这个弱化版的题.考虑\(~dp~\),直接统计答案难以入手,于是考虑容斥.显然有,符合条件的方案数\(=\)所有方案数\(-\)不符合条件的方案数,而这个不符合条件的方案数就是图没有完全联通的情况.设\(~dp_i~\)表示\(~i~\)个点组成的合法方案…