[CTS2019]氪金手游 各种情况加在一起 先考虑弱化版:外向树,wi确定 i合法的概率就是wi/sw sw表示子树的w的和,和子树外情况无关 这些概率乘起来就是最终合法的概率 如果都是外向树, f[i][j]i为根子树,sw=j的所有wi出现方案下的合法概率和 背包 有反向边? 直接处理满足很难,子树内外有先后顺序 容斥!不满足+随意 不满足只要转移的时候乘上-1 随意就是断开这条边不考虑. 所以f[i][j]定义是:i为根子树的连通块sw=j,所有情况的合法概率乘上(-1)^|S|的和 注…
传送门 D2T3签到题可真是IQ Decrease,概率独立没想到然后就20pts滚粗了 注意题目是先对于所有点rand一个权值\(w\)然后再抽卡. 先考虑给出的关系是一棵外向树的情况.那么我们要求在所有点内,根要被首先抽到,然后对于每一棵子树,每棵子树的根需要在这个子树内第一个被抽到,这就是一个很明显的子问题了. 考虑某一个点\(x\)在它的子树中第一个被抽到的概率.设\(W\)表示所有点的\(w\)之和,\(W'\)表示\(x\)的子树的\(w\)之和,\(w_x\)表示点\(x\)的权值…
原题传送门 我们珂以先考虑一条链的情况,设\(sum\)为所有\(w_i\)的总和,\(Sw_i\)表示\(\sum_{j=i}^nw_i\) \[1 \rightarrow 2 \rightarrow 3 \rightarrow -- \rightarrow n\] \[P(1\rightarrow n)=\prod_{i=1}^n(\frac{w_i}{Sum}\sum_{j=0}^{\inf}(\frac{Sum-Sw_i}{Sum})^j)=\prod_{i=1}^n\frac{w_i}…
考虑外向树怎么做.显然设f[i][j]为i子树中出现权值和为j的合法方案的概率,转移做树形背包即可. 如果树上只有一条反向边,显然可以先不考虑该边计算概率,再减去将整棵树看做外向树的概率.于是考虑容斥,进一步拓展到多条反向边,就是考虑0条反向边的概率-考虑1条反向边的概率+考虑2条反向边的概率……容斥可以在dp中完成,即遇到反向边时分是否考虑它转移,若考虑乘上-1的系数. #include<bits/stdc++.h> using namespace std; #define ll long…
先考虑外向树的做法,显然一个点在其子树内第一个出现的概率等于它的权值除以它子树的权值和.于是f[i][j]表示i的子树的权值和为j时,i子树内所有数的相互顺序都满足条件的概率,转移直接做一个背包卷积即可. 现在考虑反向边,通过容斥变成“至少有i条边不满足条件”的满足题目条件的概率,这样一来那些反向边会有一部分被变为正向边,另一部分被删除.如果枚举哪些边被反向的话可以做到$O(2^nn^2)$.但事实上我们并不关心具体是哪些边被反向了,而只关心有多少边被反向了.于是自然有一个方程f[i][j][k…
Problem \(\mathtt {loj-3124}\) 题意概要:给定 \(n\) 个点,\(w_i\) 分别有 \(p_{i,1},p_{i,2},p_{i,3}\) 的概率取 \(1,2,3\). 在确定了所有的 \(w_i\) 后再开始游戏:不断抽点,点 \(i\) 被抽中的概率为 \(\frac {w_i}{\sum_{j=1}^nw_j}\),直到所有点都被抽中过. 给定 \(n-1\) 个二元组 \((u,v)\) 表示第一次抽中 \(u\) 的时间需要比第一次抽中 \(v\)…
降智好题.本蒟蒻VP时没想到怎么做被题面迷惑了,只会20分的“好”成绩.简直自闭了. 首先显然度为0的点是白给的,根据等比数列求和公式即可求得.然后考虑这个树如果是一颗外向树,就是每个点先父亲再自己.然后直接DP,令f[i][j]表示子树i内Σw=j的概率,转移时直接用背包转移一发即可.边是正向的直接转移,反向的加上去掉该限制的答案,并减去反向的答案.复杂度显然是O(n2) #include<bits/stdc++.h> using namespace std; ,mod=; ],f[N][N…
题目大意 题意狗屁不通 看毛子语都比看这个题面强 分析 我们假设这棵树是一个内向树 那么我们可以轻易的得到dp[x][i]表示x点子树和为i的期望 转移只需枚举当前期望大小和子树期望大小即可 但是由于边的方向不一定 所以这棵树上存在反向边 我们可以容斥有i个边不合法的情况 因此对于一个反向边要么x点加上关系合法,将子树分离的贡献 要么这个边算是不合法的 对于这种情况我们可以直接减掉贡献 因为我们知道这个贡献已经是0~i的容斥情况 而这个减号相当于*-1 可以完成容斥 复杂度O(n^2) 代码 #…
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 \(N\) 种卡,第 \(i\) 种卡有一个权值 \(W_i\),小刘同学不知道 \(W_i\) 具体的值是什么.但是他通过和网友交流,他了解到 \(W_i\) 服从一个分布. - 具体地,对每个 \(i\),小刘了解到三个参数 \(p_{i,1},p_{i,2},p_{i,3}\),\(W_i\)…
[CTS2019]氪金手游(动态规划) 题面 LOJ 洛谷 题解 首先不难发现整个图构成的结构是一棵树,如果这个东西是一个外向树的话,那么我们在意的只有这棵子树内的顺序关系,子树外的关系与这棵子树之间的限制无关.所以我们只需要强制根节点在其他儿子之前的就行了(你可以认为如果这次随机抽到了子树外面的东西就重新抽一次,这个概率等于只考虑子树权值和的概率),那么这里的概率就是\(\frac{w_u}{\sum w}\).然后每个根节点显然可以独立考虑,所以只需要把所有根节点的结果直接乘起来就好了. 那…
「CTS2019」氪金手游 解题思路 考场上想出了外向树的做法,居然没意识到反向边可以容斥,其实外向树会做的话这个题差不多就做完了. 令 \(dp[u][i]\) 表示单独考虑 \(u\) 节点所在子树,子树内 \(\sum w=i\) 的合法概率,可以简单证明子树外的选取是不影响子树内的答案的,所以可以这样表示. 证明:我们只考虑子树内的第一个选出根节点 \(u\) 的概率是 \(\frac{w_u}{i}\),假设当前未被选走的卡的概率之和为 \(S\) ,那么考虑全部未被选走的卡,子树内第…
「CTS2019 | CTSC2019」氪金手游 降 智 好 题 ... 考场上签到失败了,没想容斥就只打了20分暴力... 考虑一个事情,你抽中一个度为0的点,相当于把这个点删掉了(当然你也只能抽中度为0的点) 删掉就是字面意思,就是剩下的树变成子问题 考虑为什么,在抽中这个\(i\)号点后,抽中其他点的概率为 \[ \frac{W-w_i}{W}\sum_{i=0}^{\infty}(\frac{w_i}{W})^i=1 \] 说明这个点已经白给了 然后考虑这个树如果是一颗外向树,就是每个点…
BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧! ” SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件.进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定. 随后电能可以从直接…
前言 话说在\(Loj\)下了个数据发现这题的名字叫\(fgo\) 正题 题目链接:https://www.luogu.com.cn/problem/P5405 题目大意 \(n\)张卡的权值为\(1/2/3\)的概率权重分别是\(p_{x,1/2/3}\),然后按照权值每次获得一张未获得的卡,然后再该出一棵有向树(方向可以都是外向或内向的),求所有每条边\((u,v)\),\(u\)都比\(v\)先获得的概率. \(1\leq n\leq 1000,0\leq p_{i,j}\leq 10^6…
好久没有写过题解了--现在感觉以前的题解弱爆了,还有这么多访问量-- 没有考虑别人的感受,没有放描述.代码,题解也写得歪歪扭扭. 并且我要强烈谴责某些写题解的代码不打注释的人,像天书那样,不是写给普通人看的. 原题点这(JZOJ) 描述 Description YJC最近在学习图的有关知识.今天,他遇到了这么一个概念:随机游走.随机游走指每次从相邻的点中随机选一个走过去,重复这样的过程若干次.YJC很聪明,他很快就学会了怎么跑随机游走.为了检验自己是不是欧洲人,他决定选一棵树,每条边边权为1,选…
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!”SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件.进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经过通电的导线使得其他…
题目链接 这题好神啊…… 设f[i]为i没电的概率,初始化$f[i]=1-q[i]$ 之后x的电有三个来源: 1.x自己有电 2.x的儿子给它传来了电 3.x的父亲给它传来了电 对于2和3操作分别做一次树形DP,第一次是用儿子推出父亲,第二次是用父亲推出儿子. #include<cstdio> #include<algorithm> #include<cstring> #include<cctype> #include<cstdlib> #def…
Description Solution 首先它的限制关系是一个树形图 首先考虑如果它是一个外向树该怎么做. 这是很简单的,我们相当于每个子树的根都是子树中最早出现的点,概率是容易计算的. 设DP状态\(f[i][j]\)为做到以i为根的子树,子树中权值W的和为j且满足限制关系的概率. 然后就可以直接利用子树背包DP来转移了. 如果有些边是反向(儿子到父亲)的,我们可以通过容斥来把这些边反过来,要么是彻底没有这条边的限制,要么是反向变成父亲到儿子方向,系数乘一个(-1)即可. 具体可以参考代码.…
题目:https://loj.ac/problem/3124 看了题解:https://www.cnblogs.com/Itst/p/10883880.html 先考虑外向树. 考虑分母是 \( \sum w \) ,同样一个子树,其实不会因为子树外部分的 \( \sum w \) 不同而对子树内的 DP 值有影响. 比如,在只考虑以子树内的 \( \sum w \) 为分母的情况下做出了 “ cr 子树内部合法的方案数 f[cr] ” 设 \( W' = \sum\limits_{i \in…
分析 首先容易得出这样一个事实,在若干物品中最先被选出的是编号为\(i\)的物品的概率为\(\frac{W_i}{\sum_{j=1}^{cnt}W_j}\). 假设树是一棵外向树,即父亲比儿子先选(一个点比它的子树中的所有其他的点先选),我们可以令\(f(i,j)\)表示以\(i\)为根的子树,子树内的总权值为\(j\),子树内的选取顺序合法的概率,转移类似树上分组背包. 那么我们现在需要考虑如何处理儿子比父亲先选的情况,其实可以直接容斥,减去父亲比儿子先选的概率就好了,注意这样的子树不要统计…
\(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \(p_{i,k}\).依照此规则确定权值后,你不停抽卡,每次抽到第 \(i\) 张卡牌的概率正比于 \(w_i\),直到所有卡都被抽过至少一次.   此后,记 \(t_i\) 表示第 \(i\) 张牌第一次被抽到的时间.给定 \(n-1\) 条形如 \(\lang u,v\rang\) 的限制,表示…
传送门 首先,关于\(Min-Max\)容斥 设\(S\)为一个点的集合,每个点的权值为走到这个点的期望时间,则\(Max(S)\)即为走遍这个集合所有点的期望时间,\(Min(S)\)即为第一次走到这个集合的期望时间,题目所求为\(Max(S)\)很难算于是转化为求\(Min(S)\) 设\(f_u\)为点从点\(u\)开始游走第一次到达\(S\)的期望时间,那么有\[f_u=1+\sum_{(u,v\in E)}\frac{f_v}{deg_v}\] 如果\(u\in S\),那么\(f_u…
LINK:概率充电器 大概是一个比较水的题目 不过有一些坑点. 根据期望的线性性 可以直接计算每个元件的期望 累和即为答案. 考虑统计每一个元件的概率的话 那么对其有贡献就是儿子 父亲 以及自己. 自己很容易算 儿子也很容易 父亲的话需要dfs一下父亲那边即可. 不过这样做是n^2.一个容易误解的地方 儿子能传给父亲父亲能传给儿子 这样就带环了Y. 不过 我们单独考虑时 当儿子传给父亲时 儿子一定是亮的 所以这个dp是无环的. 容易想到换根dp.不过需要算出去掉某个儿子之后的概率. 设当前概率为…
题目链接 loj2542 题解 设\(f[i][S]\)表示从\(i\)节点出发,走完\(S\)集合中的点的期望步数 记\(de[i]\)为\(i\)的度数,\(E\)为边集,我们很容易写出状态转移方程 ①若\(i \notin S\) \[f[i][S] = \frac{1}{de[i]}\sum\limits_{(i,j) \in E}(f[j][S] + 1)\] ②若\(i \in S\) 除非\(\{i\} = S\),\(f[i][S] = 0\) 否则 \[f[i][S] = \f…
随着互联网的快速发展,游戏产业也迎来了盛开的春天.特别是进入网络游戏时代后,来自世界各地的朋友,甚至来自地球村的朋友一起玩游戏.在这个阶段,游戏制作者还专注于设计副本,活动,皮肤和充值.无论你是否关心,各种各样的游戏,无论是隐藏的还是现在的,都会揭示两个词:充值. 在各种平台中,有一些值得信赖.小编结合2018年手机游戏发行白皮书,结合各大媒体的评价,逐一对2018年的手机游戏折扣app进行评估和分析. 排名第一:小七手游中心.先看东西(下载地址在截图后面)   小七手游折扣app(点击下载)平…
2019游戏版号陆续开放,玩家又有许多好游戏可以玩了. 小编就以当前最热门的十个游戏来点评手游折扣平台App排行榜吧! 排名第一的游戏: 少年西游记-新征程 老平台,集成SDK,良心平台,覆盖全网游戏.手游折扣中心(点击获取)(99%的游戏都能在这个平台搜索到最低的折扣) 少年西游记这款卡牌收集养成游戏我非常喜欢.相信大家都看过西游记,对里面的佛祖也好,妖怪也好,师徒四人也好都有了解,游戏配合动感的主题曲从下界打到天界,从南天门打到凌霄宝殿,只要有人的地方,咱们就要闯一闯,游戏玩了一会,感觉被落…
微信公众号[程序员江湖] 作者黄小斜,斜杠青年,某985硕士,阿里 Java 研发工程师,于 2018 年秋招拿到 BAT 头条.网易.滴滴等 8 个大厂 offer,目前致力于分享这几年的学习经验.求职心得和成长感悟,以及作为程序员的思考和见解.(关注公众号后回复”资料“即可领取 3T 免费技术学习资源) ​ 文章版权归腾讯GAD所有,禁止匿名转载:禁止商业使用:禁止个人使用. 一.前言 从去年12月份开始,到现在,我全程参与了公司一款SLG手游的研发,负责整个游戏的服务端部分.这也是我第一次…
直接上干货.也许你在找寻,安全的手游折扣App,稳定的手游折扣App,不断续充的折扣App,续充不涨价的折扣App,网上的内容太多,难以分辨.那么看这个可以直接给你答案 1.历史(2004年成立,15年) 2.玩家规模(上亿的玩家群体,文章后面就是玩家的评测,全是真玩家,骨灰级玩家) 3.礼包(礼包数量没意思,这个平台礼包首发多,珍惜礼包多) 4.安全(首续冲明确,良心,很多平台只标识首充,续充乱来.这个平台是游戏厂商亲儿子,全是深度合作,安全性有保障,不会出现小平台封号的情况) 5.体验(看图…
2018游戏圈白皮书发布,PC端游的份额继续下降,页游的比例也在下降,但手游的比例持续3年上升.以渠道为阵营,逐渐小的平台和公会被逐渐淘汰.流量集中在少数几个大的平台.但是这样带来的问题是,平台越来越强势,玩家的选择空间越来越小,以前有公会代充,现在公会代充这种方式因为不安全的因素,平台支持力度不够,也逐渐被淘汰. 现在有没有厂家认可,安全稳定的折扣端,一直是游戏圈的玩家想寻找的答案. 接下来,小编就给大家结合2018游戏分发平台白皮书,来讲解评测一下2018排名前10的折扣app平台,看看各自…
Airtest Project是网易自研的游戏自动化项目.Airtest IDE是这个项目的一个IDE,就像Eclipse.Pycharm一样,是一个集成开发工具.Airtest框架是一个基于OpenCV的图像识别自动化框架,可以用于所有平台.Poco框架是一个类似于Appium的主打游戏自动化框架,支持Unity3D.Cocos2dx等游戏引擎(需要接入Poco-SDK),也可以用于Android原生APP测试(不用接SDK直接用). Airtest的简介.安装.使用.详解,我在这里就不过多介…