[CSP-S模拟测试]:sum(数学+莫队)】的更多相关文章

题目传送门(内部题63) 输入格式 第一行有一个整数$id$,表示测试点编号.第一行有一个整数$q$,表示询问组数.然后有$q$行,每行有两个整数$n_i,m_i$. 输出格式 一共有$q$行,每行一个整数表示每组询问的答案$S_{n_i,m_i}$对$10^9+7$取模的结果. 样例 样例输入: 151 12 13 24 35 5 样例输出: 2371532 数据范围与提示 对于所有数据,$1\leqslant q,n_i,m_i\leqslant 10^5$. 题解 考场上把$80$分部分分…
题面戳这里 思路: noip考莫队???!!! 考场上死活没往这方面想啊!!!数据分治忘写endl50pts滚粗了 这里每个询问都有n,m两个参数 我们可以把它看做常规莫队中的l和r 然后利用组合数的可递推性质就好了 相信改变m大家都会写,n呢? 看图: 我们发现,$S_n^m = S_{n-1}^m \times 2 - C_n^{m+1} + C_{n-1}^{m+1}$ (因为杨辉三角的性质) 所以n也可以递推 套个莫队就好了 代码: #include<iostream> #includ…
题意: 一个颜色序列,\(a_1, a_2, ...a_i\)表示第i个的颜色,给出每种颜色的美丽度\(w_i\),定义一段颜色的美丽值为该段颜色的美丽值之和(重复的只计算一次),每次都会修改某个位置的颜色或者查询l到r之间的美丽值. 分析: 带修改莫队:在所有询问中多记录一个时间,每次跳转询问前,处理当前时间(上一次操作所在的时间)到目的时间(本次询问所在时间)中的所有修改操作,如果时间是倒退的,就将值改回来,否则就更改值,并且如果修改的位置不在当前的莫队指针之间就直接修改,否则就先删除再添加…
题目描述 分析 \(80\) 分的暴力都打出来了还是没有想到莫队 首先对于 \(s[n][m]\) 我们可以很快地由它推到 \(s[n][m+1]\) 和 \(s[n][m-1]\) 即 \(s[n][m+1]=s[n][m]+C_n^{m+1}\) \(s[n][m-1]=s[n][m]-C_n^m\) 然后我们考虑怎么由 \(s[n][m]\) 推到 \(s[n-1][m]\) 和 \(s[n+1][m]\) 其实画出杨辉三角观察性质即可 摘自 \({\color{black}{M}}{\c…
题目描述 $IcePrincess\text{_}1968$和$IcePrince\text{_}1968$长大了,他们开始协助国王$IceKing\text{_}1968$管理国内事物. $IcePrincess\text{_}1968$和$IcePrince\text{_}1968$住在一个宁静悠远的王国:$IceKingdom$——飘雪圣域.飘雪圣域有$n$个城镇,编号$1,2,3...n$.有些城镇之间有道路,且满足任意两点之间有且仅有一条路径.飘雪圣域风景优美,但气候并不是太好.根据$…
题目描述 然而贪玩的$dirty$又开始了他的第三个游戏. $dirty$抓来了$n$只蚂蚁,并且赋予每只蚂蚁不同的编号,编号从$1$到$n$.最开始,它们按某个顺序排成一列.现在$dirty$想要进行$m$场比赛,每场比赛给出$l$和$r$,表示选出从左向右数第$l$只至第$r$只蚂蚁.被选出的蚂蚁需要快速地按编号从小到大排序,之后这些蚂蚁中编号连续的蚂蚁将围成一个圈.每场比赛结束后,蚂蚁们还需要快速地回到最开始的位置. 按照蚂蚁的审美标准,围成的圈越大美观值就越大.于是$dirty$每次需要…
题目描述 小$C$在家中开垦了一块菜地,可以抽象成一个$r\times c$大小的矩形区域,菜地的每个位置都种着一种蔬菜.秋天到了,小$C$家的菜地丰收了. 小$C$拟定了$q$种采摘蔬菜的计划,计划采摘区域是菜地的一个子矩形,你需要帮助他计算每种计划的美味度,美味度等于每种蔬菜在采摘区域出现次数的平方和. 输入格式 第一行三个正整数$r,c,q$.接下来$r$行每行$c$个正整数,第$i+1$行第$j$个数为$a_i,j$,表示每个位置的蔬菜种类.接下来$q$行,每行$4$个正整数$x_0,y…
改了两天,终于将T1,T3毒瘤题改完了... T1 施工(单调栈优化DP) 考场上只想到了n*hmaxn*hmaxn的DP,用线段树优化一下变成n*hmaxn*log但显然不是正解 正解是很**的单调栈 可以想象到最优情况一定是将两端高于中间的一段平原填成一段平的坑,不然如果坑内存在高度差那么我们即使只将一部分抬升也肯定没有用处,并且如果中间的坑已经高于了两端,再向上升也肯定不优,然后就中间的坑可以很很小,也可以很长,对于这个模型我们首先想到n^2*h的DP 设当前表示的f[i]表示当前到了i节…
上次做过类似的题,原来这道还要简单些?? 上次那道题是每天可以同时买进卖出,所以用两个优先队列,一个存买进,一个存卖出(供反悔的队列). 这道题实际上用一个就够了???但是不好理解!! 所以我还是用了俩... 和之前那道题不同的是,如果我选择了反悔,之前第二个队列的队头就完全没有用了,但是我们可以选择重新买它,所以把它重新放到第一个队列. #include<bits/stdc++.h> using namespace std; priority_queue < int, vector &…
二次离线莫队. 终于懂了 \(lxl\) 大爷发明的二次离线莫队,\(\%\%\%lxl\) 二次离线莫队,顾名思义就是将莫队离线两次.那怎么离线两次呢? 每当我们将 \([l,r]\) 移动右端点到 \(a_{r+1}\) 的时候,发现贡献为 \([1,r]-[1,l-1]\) 对 \(a_{r+1}\). \([1,r]\) 对 \(a_{r+1}\) 的贡献可以 \(O(n\log n)\) 预处理出来,那么我们只需要处理 \([1,l-1]\) 对 \(a_{r+1}\) 的贡献. 那么…