2017数据科学报告:机器学习工程师年薪最高,Python最常用 2017-11-03 11:05 数据平台 Kaggle 近日发布了2017 机器学习及数据科学调查报告,针对最受欢迎的编程语言.不同国家数据科学家的平均年龄.不同国家的平均年薪等进行深度调查.此次调查共收到16000余份回复. 以下「AI脑力波」小编对该报告数据进行了梳理编译,供大家参考. 年龄 从全球范围来看,本次调查对象的平均年龄在30岁左右.在不同的国家,数值会有所差异,加拿大接受问卷调查的平均年龄为34岁,而中国的机器学…
一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文章中我们只介绍了如何利用urllib.requests这样的请求库来将我们的程序模拟成一个请求网络服务的一端,来直接取得设置好的url地址中朴素的网页内容,再利用BeautifulSoup或pyspider这样的解析库来对获取的网页内容进行解析,在初级篇中我们也只了解到如何爬取静态网页,那是网络爬虫…
一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集实战 2.1 数据要求 这次我们需要采集的数据是知名旅游网站马蜂窝下重庆区域内所有景点的用户评论数据,如下图所示: 思路是,先获取所有景点的poi ID,即每一个景点主页url地址中的唯一数字: 这一步和(数据科学学习手札33)基于Python的网络数据采集实战(1)中做法类似,即在下述界面: 翻页…
本文对应脚本已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们平时在数据可视化或空间数据分析的过程中经常会需要某个地区的道路网络及节点数据,而OpenStreetMap就是一个很好的数据来源(譬如图1柏林路网): 图1 通常我们可以在 https://www.openstreetmap.org/export 中选择矩形区域内的路网矢量数据进行下载,但这种方式对选择区域的大小有一定限制,想获取较大范围区域…
数据科学是一个范围很广的学科.机器学习和统计学都是数据科学的一部分.机器学习中的学习一词表示算法依赖于一些数据(被用作训练集)来调整模型或算法的参数.这包含了许多的技术,比如回归.朴素贝叶斯或监督聚类.但不是所有的技术都适合机器学习.例如有一种统计和数据科学技术就不适合——无监督聚类,该技术是在没有任何先验知识或训练集的情况下检测 cluster 和 cluster 结构,从而帮助分类算法.这种情况需要人来标记 cluster.一些技术是混合的,比如半监督分类.一些模式检测或密度评估技术适合机器…
朴素贝叶斯模型 朴素贝叶斯模型是一组非常简单快速的分类方法,通常适用于维度非常高的数据集.因为运行速度快,可调参数少.是一个快速粗糙的分类基本方案. naive Bayes classifiers 贝叶斯分类 朴素贝叶斯分类器建立在贝叶斯分类方法的基础上.数学基础是贝叶斯定理. 一个描述统计量条件概率关系的公式. 在贝叶斯分类中,我们希望确定一个具有某些特征的样本 属于 某类标签的概率. 通常记为 P(L|特征) 需要确定俩种标签,定义为L1和L2. 计算俩个标签的后验概率的比值 现在需要一种模…
无参数 算法 随机森林 随机森林是一种集成方法,集成多个比较简单的评估器形成累计效果. 导入标准程序库 随机森林的诱因: 决策树 随机森林是建立在决策树 基础上 的集成学习器 建一颗决策树 二叉决策树 在一颗合理的决策书中.每个问题基本上都可将种类的可能性减半. 决策树的难点在于如何设计每一步的问题. 创建一颗决策树 原始数据: 四种标签 使用DecisionTreeClassifier评估器 辅助函数,分类器结果可视化 检查决策树分类的结果 在深度为5的时候,在黄色与蓝色区域中间有一个浅紫色区…
机器学习分为俩类: 有监督学习 supervised learning 和 无监督学习 unsupervised learning 有监督学习: 对数据的若干特征与若干标签之间 的关联性 进行建模的过程. 只要模型被确定,就可以应用到新的未知的数据上. 进一步可以分为 分类 classification 任务 和 回归 regression 任务. 分类任务: 标签是离散值. 回归任务: 标签是连续值. 无监督学习: 指对不带任何标签的数据特征进行建模. 让数据自己介绍自己. 包括 聚类 clu…
前面学习的无监督学习模型:降维 另一种无监督学习模型:聚类算法. 聚类算法直接冲数据的内在性质中学习最优的划分结果或者确定离散标签类型. 最简单最容易理解的聚类算法可能是 k-means聚类算法了. k-means简介 在不带标签的多维数据集中 寻找确定数量 的簇. 最优的聚类结果需要符合以下俩个假设: 簇中心点 cluster center 是属于该簇的所有数据点坐标的算术平均值 一个簇的每个点到该簇中心点的距离 比 到其他簇中心点的距离 短. 原始数据,包含4个明显的簇 评估器拟合数据: 高…
PCA对非线性的数据集处理效果不太好. 另一种方法 流形学习 manifold learning 是一种无监督评估器,试图将一个低维度流形嵌入到一个高纬度 空间来描述数据集 . 类似 一张纸 (二维) 卷起 弄皱 (三维).二维流形 嵌入到一个三维空间, 就不再是线性的了. 流形方法技巧: 多维标度法 multidimensional scaling MSD 局部线性嵌入法 locally linear embedding LLE 保距映射法 isometric mapping Isomap 流…