BZOJ1257 [CQOI2007]余数之和[规律]】的更多相关文章

被zcr和yy轮流嘲讽了一番,感觉自己智商日渐下降...\TヘTツ 先拆mod变成整数除法,然后就是$nk- \Sigma_{i=1}^{n} i * \lfloor \frac{k}{i} \rfloor$.求后面那个. 然后发现$\lfloor \frac{k}{i} \rfloor$是连续且单调不增的.对于$x$,$[x,\lfloor \frac{k}{\lfloor \frac{k}{i} \rfloor} \rfloor]$内这个商是一样的.可以意会. 这个是找规律得到的,不会证QW…
BZOJ1257 CQOI2007 余数之和 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7 Input 输入仅一行,包含两个整数n, k. 1<=n ,k<=10^9 Output 输出仅一行,即j(n, k).…
http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #include<cstdio> #include<iostream> using namespace std; int main() { int n,k; scanf("%d%d",&n,&k); ; if(n>k) { ans=1ll*(n-k)*k;…
1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 6117  Solved: 2949[Submit][Status][Discuss] Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 m…
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mo…
题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7 题解k%i=k-\(\left\lfloor\frac{k}{i}\right\rfloor\) \(*i\),然后\(\left\lfloor\frac{k}{i}\right\rfloor…
题目大意 给你 \(n, k\),计算 $ \sum_{i=1}^n k \bmod i$ 解析 注意到 $ k\bmod i=k-[k/i] \times i$ 则上式等于 $ n \times k - \sum_{i=1}^n [k/i] \times i$ 注意到 $ [k/i]$的取值最多只有 $ sprt(k)$个,不妨用等差数列直接算出每段的 $ i$的和 代码 #include <iostream> using namespace std; long long n, k, ans…
非常经典的题目... 要求 则有 实际上 最多只有2*sqrt(k)种取值,非常好证明 因为>=sqrt(k)的数除k下取整得到的数一定<=sqrt(k),而k除以<=sqrt(k)以下的数也会得到sqrt(k)个>=sqrt(k)的数,于是k除以i下取整最多只有2*sqrt(k)种取值 于是我们枚举i,找到每一段k除以i下取整的数相同的左端点(k/(k/i+1)+1)和右端点(k/(k/i))计算答案即可,时间复杂度O(sqrt(k)) #include<iostream&…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1257 题目所求为$$Ans=\sum_{i=1}^nk%i$$ 将其简单变形一下$$Ans=\sum_{i=1}^nk-\lfloor\frac{k}{i}\rfloor*i$$ $$Ans=n*k-\sum_{i=1}^{min(n,k)}\lfloor\frac{k}{i}\rfloor*i$$ 容易知道$\frac{k}{i}$一共有$\sqrt{k}$种取值,可以利用分块技巧.然…
题意 求 $\sum _{i=1}^n k \ mod \ i$($1\leq n,k\leq 10^9$). 分析 数据范围这么大 $O(n)$ 的复杂度也挺不住啊 根据取模的意义,$k \ mod \ i = k - \left \lfloor \frac{k}{i} \right \rfloor * i$, 因此可以用整除分块,注意分类讨论 $k$ 与 $n$ 的关系. #include<bits/stdc++.h> using namespace std; typedef long l…