机器学习降维--SVD奇异值分解】的更多相关文章

奇异值分解是有着很明显的物理意义,将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性,让机器学会抽取重要的特征,SVD是一个重要的方法. 所以SVD不仅是一个数学问题,在工程应用方面很多地方都有其身影,如PCA,推荐系统.任意矩阵的满秩分解. 1.特征值 如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:          这时候λ被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量.特征值分解是将一个矩阵分解成以下形式:  …
简单易学的机器学习算法-SVD奇异值分解 一.SVD奇异值分解的定义     假设M是一个的矩阵,如果存在一个分解: 其中的酉矩阵,的半正定对角矩阵,的共轭转置矩阵,且为的酉矩阵.这样的分解称为M的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩阵,称为右奇异矩阵. 二.SVD奇异值分解与特征值分解的关系 特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征.然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵. 这里,是方阵,为单位矩阵,的特征向量,的特征…
机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近刷题看到特征降维相关试题,发现自己了解的真是太少啦,只知道最简单的降维方法,这里列出了常见的降维方法,有些算法并没有详细推导.特征降维方法包括:Lasso,PCA,小波分析,LDA,奇异值分解SVD,拉普拉斯特征映射,SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap. 1…
SVD奇异值分解: SVD是一种可靠的正交矩阵分解法.可以把A矩阵分解成U,∑,VT三个矩阵相乘的形式.(Svd(A)=[U*∑*VT],A不必是方阵,U,VT必定是正交阵,S是对角阵<以奇异值为对角线,其他全为0>)  用途:  信息检索(LSA:隐性语义索引,LSA:隐性语义分析),分解后的奇异值代表了文章的主题或者概念,信息检索的时候同义词,或者说同一主题下的词会映射为同一主题,这样就可以提高搜索效率 数据压缩:通过奇异值分解,选择能量较大的前N个奇异值来代替所有的数据信息,这样可以降低…
看了几篇关于奇异值分解(Singular Value Decomposition,SVD)的博客,大部分都是从坐标变换(线性变换)的角度来阐述,讲了一堆坐标变换的东西,整了一大堆图,试图“通俗易懂”地向读者解释清楚这个矩阵分解方法.然而这个“通俗易懂”到我这就变成了“似懂非懂”,这些漂亮的图可把我整懵了. 就像<没想到吧>里王祖蓝对一个碎碎念的观众说的,“我问你的问题是,你是很熟悉邓紫棋的歌吗,我只问了你一个问题,你回我这么多干嘛”(上B站忍不住又看了邓紫棋3个视频,差点回不来).我就想知道这…
SVD奇异值分解: SVD是一种可靠的正交矩阵分解法.可以把A矩阵分解成U,∑,VT三个矩阵相乘的形式.(Svd(A)=[U*∑*VT],A不必是方阵,U,VT必定是正交阵,S是对角阵<以奇异值为对角线,其他全为0>)  用途:  信息检索(LSA:隐性语义索引,LSA:隐性语义分析),分解后的奇异值代表了文章的主题或者概念,信息检索的时候同义词,或者说同一主题下的词会映射为同一主题,这样就可以提高搜索效率 数据压缩:通过奇异值分解,选择能量较大的前N个奇异值来代替所有的数据信息,这样可以降低…
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩阵,称为右奇异矩阵. 二.SVD奇异值分解与特征值分解的关系 特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征.然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵. 这里,和是方阵,和为单位矩阵,为的特征向量,为的特征向量.和的特征值为的奇异值的平方. 三.…
转载请声明出处 SVD奇异值分解概述 SVD不仅是一个数学问题,在工程应用中的很多地方都有它的身影,比如前面讲的PCA,掌握了SVD原理后再去看PCA那是相当简单的,在推荐系统方面,SVD更是名声大噪,将它应用于推荐系统的是Netflix大奖的获得者Koren,可以在Google上找到他写的文章:用SVD可以很容易得到任意矩阵的满秩分解,用满秩分解可以对数据做压缩.可以用SVD来证明对任意M*N的矩阵均存在如下分解: 这个可以应用在数据降维压缩上!在数据相关性特别大的情况下存储X和Y矩阵比存储A…
四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据.之所以使用降维…
学习SVD奇异值分解的网上资料汇总: 1. 关于svd的一篇概念文,这篇文章也是后续几篇文章的鼻祖~ http://www.ams.org/samplings/feature-column/fcarc-svd 2.关于SVD物理意义分析比较透彻的文章 http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 3.关于SVD的介绍性文章,用 一个简单的例子说明了SVD分解的原始过程 http://…
降维是机器学习中很重要的一种思想.在机器学习中经常会碰到一些高维的数据集,而在高维数据情形下会出现数据样本稀疏,距离计算等困难,这类问题是所有机器学习方法共同面临的严重问题,称之为“ 维度灾难 ”.另外在高维特征中容易出现特征之间的线性相关,这也就意味着有的特征是冗余存在的.基于这些问题,降维思想就出现了. 降维方法有很多,而且分为线性降维和非线性降维,本篇文章主要讲解线性降维. 1.奇异值分解(SVD) 为什么先介绍SVD算法,因为在后面的PCA算法的实现用到了SVD算法.SVD算法不光可以用…
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器学习算法的基石.本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的. 1.基本原理 对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%…
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 奇异值分解(Singular  Value Decomposition,后面简称 SVD)是在线性代数中一种重要的矩阵分解,它不光可用在降维算法中(例如PCA算法)的特征分解,还可以用于推荐系统,以及自然语言处理等领域,在机器学习,信号处理,统计学等领域中有重要应用. 比如之前的学习的PCA,掌握了SVD原理后再去看PC…
SVD 原理 奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,也是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域. 有一个×的实数矩阵,我们想要把它分解成如下的形式:$A = U\Sigma V^T$ 其中和均为单位正交阵,即有$=$和$=$,称为左奇异矩阵,称为右奇异矩阵,Σ仅在主对角线上有值,我们称它为奇异值,其它元素均为0. 上面矩阵的维度分别为$U \in R^{m\tim…
  主要参考:https://www.zhihu.com/question/38417101/answer/94338598 http://blog.jobbole.com/88208/ 先说下PCA的主要步骤:假设原始数据是10(行,样例数,y1-y10)*10(列,特征数x1-x10)的(10个样例,每样例对应10个特征)(1).分别求各特征(列)的均值并对应减去所求均值. (2).求特征协方差矩阵.&amp;lt;img src="https://pic2.zhimg.com/cc…
求矩阵的秩 设 ,已知r(A)=2,则参数x,y分别是 解:任意三阶子式=0,有二阶子式≠0,但是这些子式比较多,可以使用初等变换,因为初等变换不改变矩阵的秩,可以将矩阵通过初等行(列)变换,化为行阶梯矩阵,有几行不等于0,秩就是几. 行列式的转换                                Am×nx=0只有零解 <=> r(A)=n 特别地,A是n×n时,则Am×nx=0只有零解 <=> |A|≠0 Am×nx=0有非零解 <=> r(A)<…
1.原理和概念 PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法. PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征. PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的. 其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,…
前言: PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景.奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性.就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜…
  首先推荐一篇博客,奇异值分解(SVD)原理详解及推导 - CSDN博客,讲解的很清楚.这里我谈谈自己的理解,方便以后回顾.   如果把向量理解为空间中的一个元素,那么矩阵可以理解为两个空间上的映射.在线性代数中我们常见的是正交变换,这种变换不会改变向量之间的夹角,可以用坐标系的平移旋转来直观理解.但是对一般的方阵,甚至对更一般的非对称矩阵,这种变化的几何含义又该怎么理解,一直都没有搞清楚.通过奇异值分解能说明这些变化 的实际含义.   首先我们来看一般的方阵\(M(n*n)\),可以找到一对…
奇异值分解(Singular Value Decompositon,SVD),可以实现用小得多的数据集来表示原始数据集. 优点:简化数据,取出噪声,提高算法的结果 缺点:数据的转换可能难以理解 适用数据类型:数值型数据 SVD最早的应用之一是信息检索,我们称利用SVD的方法为隐形语义索引(LSI)或者隐形语义分析(LSA). 在LSI中,一个矩阵是有文档和词语组成的.当我们在该矩阵上应用SVD的时候,就会构建出多个奇异值.这些奇异值代表了文档中的概念或者主题,这一特点可以用于更高效的文档检索.…
矩阵奇异值的物理意义是什么?如何更好地理解奇异值分解?下面我们用图片的例子来扼要分析. 矩阵的奇异值是一个数学意义上的概念,一般是由奇异值分解(Singular Value Decomposition,简称SVD分解)得到.如果要问奇异值表示什么物理意义,那么就必须考虑在不同的实际工程应用中奇异值所对应的含义.下面先尽量避开严格的数学符号推导,直观的从一张图片出发,让我们来看看奇异值代表什么意义. 这是女神上野树里(Ueno Juri)的一张照片,像素为高度450*宽度333.&amp;lt;i…
最近在找降维的解决方案中,发现了下面的思路,后面可以按照这思路进行尝试下: 链接:http://www.36dsj.com/archives/26723 引言 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法…
最近在看论文的时候看到论文中使用isomap算法把3D的人脸project到一个2D的image上.提到降维,我的第一反应就是PCA,然而PCA是典型的线性降维,无法较好的对非线性结构降维.ISOMAP是‘流形学习’中的一个经典算法,流形学习贡献了很多降维算法,其中一些与很多机器学习算法也有结合,先粗糙的介绍一下’流形学习‘. 流形学习 流形学习应该算是个大课题了,它的基本思想就是在高维空间中发现低维结构.比如这个图: 这些点都处于一个三维空间里,但我们人一看就知道它像一块卷起来的布,图中圈出来…
奇异值分解 备忘:Eigen类库可能会和其他库产生冲突,将Eigen类库的头文件引用放到前面解决了.…
看到的一篇比较好的关于SVD几何解释与简单应用的文章,其实是有中文译本的,但是翻译的太烂,还不如直接看英文原文的.课本上学的往往是知其然不知其所以然,希望这篇文能为所有初学svd的童鞋提供些直观的认识吧. A sigular value decomposition 目录(?)[-] Introduction The geometry of linear transformations The singular value decomposition How do we find the sing…
原文题目: 中文翻译:   解题过程 d.使用OpenCV编写代码 , ,               , ,               ,);     Mat A = static_cast<Mat>(AX);    Mat U, W, V;    SVD::compute(A, W, U, V);   W  =   U  =  V =   验算成功.   来自为知笔记(Wiz)…
引言 当面对的数据被抽象为一组向量,那么有必要研究一些向量的数学性质.而这些数学性质将成为PCA的理论基础. 理论描述 向量运算即:内积.首先,定义两个维数相同的向量的内积为: (a1,a2,⋯,an)T⋅(b1,b2,⋯,bn)T=a1b1+a2b2+⋯+anbn 内积运算将两个向量映射为一个实数.其计算方式非常容易理解,但是其意义并不明显.所以,我们分析内积的几何意义.假设A和B是两个n维向量,我们知道n维向量可以等价表示为n维空间中的一条从原点发射的有向线段,为了简单起见我们假设A和B均为…
test14.py #-*- coding:utf-8 import sys sys.path.append("svdRec.py") import svdRec from numpy import * from numpy import linalg as la # U, Sigma, VT = linalg.svd([[1, 1], [7, 7]]) # print(U) # print(Sigma) # print(VT) # Data = svdRec.loadExData()…
主成分分析(PCA) 测试 # -*- coding: utf-8 -*- """ Created on Thu Aug 31 14:21:51 2017 @author: Administrator """ import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris data = load…