TensorFlow中权重的随机初始化】的更多相关文章

一开始没看懂stddev是什么参数,找了一下,在tensorflow/python/ops里有random_ops,其中是这么写的: def random_normal(shape, mean=0.0, stddev=1.0, dtype=types.float32, seed=None, name=None): """Outputs random values from a normal distribution. Args: shape: A 1-D integer Te…
1. 初始化为常量 tf中使用tf.constant_initializer(value)类生成一个初始值为常量value的tensor对象. constant_initializer类的构造函数定义: def __init__(self, value=0, dtype=dtypes.float32, verify_shape=False): self.value = value self.dtype = dtypes.as_dtype(dtype) self._verify_shape = v…
Google在TensorFlow1.0,之后推出了一个叫slim的库,TF-slim是TensorFlow的一个新的轻量级的高级API接口.这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身”.它类似我们在TensorFlow模块中所介绍的tf.contrib.lyers模块,将很多常见的TensorFlow函数进行了二次封装,使得代码变得更加简洁,特别适用于构建复杂结构的深度神经网络,它可以用了定义.训练.和评估复杂的模型. 这里我们为什么要过来介绍这一节的内容呢?主要是因为Ten…
一 初始化RNN 上一节中介绍了 通过cell类构建RNN的函数,其中有一个参数initial_state,即cell初始状态参数,TensorFlow中封装了对其初始化的方法. 1.初始化为0 对于正向或反向,第一个cell传入时没有之前的序列输出值,所以需要对其进行初始化.一般来讲,不用刻意取指定,系统会默认初始化为0,当然也可以手动指定其初始化为0. initial_state = lstm_cell.zero_state(batch_size, dtype=tf.float32) 2.初…
Tensorflow:1.6.0 优化器(reference:https://blog.csdn.net/weixin_40170902/article/details/80092628) I:  tf.train.GradientDescentOptimizer  Tensorflow中实现梯度下降算法的优化器. 梯度下降:(1)标准梯度下降GD(2)批量梯度下降BGD(3)随机梯度下降SGD (1)标准梯度下降:学习训练的模型参数为W,代价函数为J(W),则代价函数关于模型参数的偏导数即相关…
在深度学习章节里,已经介绍了批量归一化的概念,详情请点击这里:第九节,改善深层神经网络:超参数调试.正则化以优化(下) 神经网络在进行训练时,主要是用来学习数据的分布规律,如果数据的训练部分和测试部分分布不一样,那么网络的泛化能力会变得非常差.而且对于训练的数据,每批分布也是不一样的,那么网络在迭代的过程中也要学习和适应不同的分布.这会大大降低网络的训练速度.此外,数据的分布对于激活函数来说也非常重要,有时数据分布范围太大不利于利用激活函数的非线性特性,比如激活函使用Sigmoid函数时,会导致…
关于Tensorflow读取数据,官网给出了三种方法: 供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据. 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据. 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(tip:使用这种方法时,结合yield 使用更为简洁,大家自己…
随机初始化 在线性回归和逻辑回归中,使用梯度下降法之前,将θ设置为0向量,有时会习惯性的将神经网络中的权重全部初始化为0,然而这在神经网络中并不适用. 以简单的三层神经网络为例,将全部权重都设置为0,如下图所示: 假设仅有一个训练数据,使用梯度下降,在第一次迭代时: 可以看到,第一次迭代的结果是:隐藏层的权重和激活值全部相等,输入层的权重相当于所有输入项放缩了相同的倍数. 在第二次迭代时: 此时,隐藏层的激活值又一次全部相等.继续迭代也会得到相同的结果,即a(2)的所有激活值和权重都一样,这显然…
tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35   http://blog.csdn.net/guvcolie/article/details/77686555 最近需要使用slim模块,先把slim的github readme放在这里,后续会一点一点翻译 github:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim TensorFlow-Sli…
本文参考Yann LeCun的LeNet5经典架构,稍加ps得到下面适用于本手写识别的cnn结构,构造一个两层卷积神经网络,神经网络的结构如下图所示: 输入-卷积-pooling-卷积-pooling-全连接层-Dropout-Softmax输出 第一层卷积利用5*5的patch,32个卷积核,可以计算出32个特征.然后进行maxpooling.第二层卷积利用5*5的patch,64个卷积核,可以计算出64个特征.然后进行max pooling.卷积核的个数是我们自己设定,可以增加卷积核数目提高…
#-*-coding:utf8-*- __author = "buyizhiyou" __date = "2017-11-21" import random, time, os, decoder from PIL import Image import numpy as np import tensorflow as tf import pdb import decoder import random ''' 在汉字ocr项目中,利用基于attention的enco…
在 TensorFlow 中,一个变量的值在被使用之前,其初始化过程需要被明确地调用. 1. 随机数生成函数 tensorflow 下的概率分布函数,一般用于对变量进行初始化,这里的变量显然是指神经网络的参数(连接层之间的权值矩阵和偏执向量). 标准高斯:tf.random_normal([2, 3], stddev=2),均值为 0,标准差为 2 截断正态分布:tf.truncated_normal() 如果随机出来(采样得到)的值偏离平均值超过 2 个标准差,该数将会舍去,重新采样获得,直到…
本文链接:https://blog.csdn.net/m0_38106113/article/details/81542863 指数加权平均算法的原理 TensorFlow中的滑动平均模型使用的是滑动平均(Moving Average)算法,又称为指数加权移动平均算法(exponenentially weighted average),这也是ExponentialMovingAverage()函数的名称由来. 先来看一个简单的例子,这个例子来自吴恩达老师的DeepLearning课程,个人强烈推…
内容概要: 单一数据读取方式: 第一种:slice_input_producer() # 返回值可以直接通过 Session.run([images, labels])查看,且第一个参数必须放在列表中,如[...] [images, labels] = tf.train.slice_input_producer([images, labels], num_epochs=None, shuffle=True) 第二种:string_input_producer() # 需要定义文件读取器,然后通过…
1.TensorFlow中的变量和常量介绍 TensorFlow中的变量: import tensorflow as tf state = tf.Variable(0,name='counter') 以上代码定义了一个state变量, new_value = tf.add(state,1) 以上代码创建一个操作,使定义的变量加一,并将加一后的值赋给 new_value update = tf.assign(state,new_value) 赋值操作,将new_value 的值赋给state in…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 本篇是TensorFlow通信机制系列的第二篇文章,主要梳理使用gRPC网络传输部分模块的结构和源码.如果读者对TensorFlow中Rendezvous部分的基本结构和原理还不是非常了解,那么建议先从这篇文章开始阅读.TensorFlow在最初被开源时还只是个单机的异构训练框架,在迭代到0.8版本开始正式支持多机分布式训练.与其他分布式训练框架不同,Google选用了开源项…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在前一篇文章中,我们梳理了TensorFlow中各种异构Device的添加和注册机制,通过使用预先定义好的宏,各种自定义好的Device能够将自己注册到全局表中.TensorFlow期望通过这种模式,能够让Device的添加和注册于系统本身更好的解耦,从而体现了较好的模块化特性.在这篇文章中,我们选择直接去窥探TensorFlow底层架构较为复杂的一个部分——StreamEx…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 受限于单个Device的计算能力和存储大小,许多深度学习模型都有着使用模型分片或相关策略的需求.模型分片的本质是将模型和相关的计算切分到不同的Device,这样做不但可以解决单个Device放不下大模型的问题,还有可能有计算加速的收益.在深度学习框架方面,显然TensorFlow比Caffe具有更高的灵活性,这主要得益于TensorFlow的Placement机制.Place…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 作为一款优秀的异构深度学习算法框架,TensorFlow可以在多种设备上运行算法程序,包括CPU,GPU,Google开发的TPU等.因为TensorFlow的架构特性非常好,可扩展性很强,所以也支持用户自定义补充其他计算设备,比如可以接入FPGA甚至是自定义芯片等.虽然在Google发布的TensorFlow white paper中并没有过多的描述设备管理相关的内容,只是…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
tensorflow中的tensor值的获取: import tensorflow as tf #定义变量a a=tf.Variable([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]) #定义索引 indics=[[0,0,0],[0,1,1],[0,1,2]] #把a中索引为indics的值取出 b=tf.gather_nd(a,indics) #初始化 init=tf.global_variables_initializer() with tf.Sessi…
在TensorFlow中基于lstm构建分词系统笔记(一) https://www.jianshu.com/p/ccb805b9f014 前言 我打算基于lstm构建一个分词系统,通过这个例子来学习下TensorFlow中如何训练循环递归神经网络.我们将从最粗糙的版本开始搭建这个小系统,然后一步步优化其中的每一部分,包括网络架构的优化,数据处理的优化,甚至整个代码架构的优化.希望想我一样的入门选手看到其中的每一步实现以及如何去优化. 关于LSTM网络的介绍,可以看官网推荐的一篇博客,写的实在是太…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7608916.html 参考网址: https://stackoverflow.com/questions/39758094/clearing-tensorflow-gpu-memory-after-model-execution https://github.com/tensorflow/tensorflow/issues/1727#issuecomment-285815312s tensorflo…
tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具体来说就是使用一个线程源源不断的将硬盘中的图片数据读入到一个内存队列中,另一个线程负责计算任务,所需数据直接从内存队列中获取. tf在内存队列之前,还设立了一个文件名队列,文件名队列存放的是参与训练的文件名,要训练 N个epoch,则文件名队列中就含有N个批次的所有文件名. 示例图如下: 图片来至于 https://zhuanlan.zhihu.…
2.Tensorflow中的变量注意:tf中使用 变量必须先初始化下面是一个使用变量的TF代码(含注释): # __author__ = "WSX" import tensorflow as tf # tf中使用 变量必须先初始化 x = tf.Variable([1,2]) a = tf.constant([3,3]) sub = tf.subtract(x,a) add = tf.add(x,sub) init = tf.global_variables_initializer()…
常量 constant tf.constant()函数定义: def constant(value, dtype=None, shape=None, name="Const", verify_shape=False) value: 符合tf中定义的数据类型的常数值或者常数列表; dtype:数据类型,可选; shape:常量的形状,可选; name:常量的名字,可选; verify_shape:常量的形状是否可以被更改,默认不可更改; constant()函数提供在tensorflow…
Update:2019/09/21 使用 tf.keras 时,请使用 tf.keras.optimizers 里面的优化器,不要使用 tf.train 里面的优化器,不然学习率衰减会出现问题. 使用 tf.keras 过程中,如果要使用 learning rate decay,不要使用 tf.train.AdamOptimizer() 等 tf.train 内的优化器,因为学习率的命名不同,导致 tf.keras 中学习率衰减的函数无法使用,一般都会报错 "AttributeError: 'T…
这篇博客不是一篇讲解原理的博客,这篇博客主要讲解tnesorlfow的RNN代码结构,通过代码来学习RNN,以及讲解time_steps,如果这篇博客没有让你明白time_steps,欢迎博客下面评论交流. 我曾翻阅各大网站,各大博客,他们的对RNN中time_steps的讲解,都没有一个让人醍醐灌顶的答案,甚至让人越看模糊.有的博主在博客中讲的看似他懂了,一问他自己他答不上来.在这里,我向全中国还迷糊在time_step的学者答疑,立此博文. 学习RNNCell要重点关注三个地方: 类方法ca…
实际场景中,经常要从多个选项中随机选择一个,不过,不同选项经常有不同的权重. /** * Created by xc on 2019/11/23 * 带权重的随机选择 */ public class Test { public static void main(String[] args) { Pair[] options = new Pair[]{new Pair("first", 3.3), new Pair("second", 3.3), new Pair(&…
原文地址: https://blog.csdn.net/dcrmg/article/details/79776876 ------------------------------------------------------------------------------------------------------------------ tensorflow数据读取机制 tensorflow中为了充分利用GPU,减少GPU等待数据的空闲时间,使用了两个线程分别执行数据读入和数据计算. 具…