Crash的数字表格】的更多相关文章

2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][Discuss] Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究…
莫比乌斯反演 PoPoQQQ讲义第4题 题解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/27/3446169.html 感觉两次sqrt(n)的枚举是亮点…… RE:汗- -b 10^7是8位数,开数组少打了一个0…… /************************************************************** Problem: 2154 User: Tunix Language: C++ Re…
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4 5 2 2 6 4…
2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3…
[BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都默认\(n<m\) 我们都知道\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) 所以所求化简 \[\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\] 看到\(gcd(i,j)\)很不爽,于是就再提出来 \[\sum_{d=1}^{n}\sum_…
传送门--Luogu 传送门--BZOJ2154 BZOJ2693是权限题 其中JZPFAR是多组询问,Crash的数字表格是单组询问 先推式子(默认\(N \leq M\),所有分数下取整) \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^M lcm(i,j) & = \sum\limits_{i=1}^N \sum\limits_{j=1}^M \frac{ij}{gcd(i,j)} \\ & = \sum\limits_{…
BZOJ2154 Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 1…
Crash的数字表格 求\(\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)\) 解 设\(N<M\),显然有 \[\sum_{i=1}^N\sum_{j=1}^M\frac{ij}{gcd(i,j)}=\sum_{d=1}^N\frac{1}{d}\sum_{i=1}^N\sum_{j=1}^Mij(gcd(i,j)==d)\] 设 \[f(k)=\sum_{i=1}^N\sum_{j=1}^Mij(gcd(i,j)==k)\] \[F(k)=\sum_{i=1}^{N}\su…
2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 3372  Solved: 1258[Submit][Status][Discuss] Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究…
A1231. Crash的数字表格(贾志鹏) 时间限制:2.0s   内存限制:512.0MB   总提交次数:410   AC次数:154   平均分:63.93   将本题分享到:        查看未格式化的试题   提交   试题讨论 试题来源 2011中国国家集训队命题答辩 问题描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, 8) = 24…
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于我式子没推出来,所以再推一遍. \[\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\] \[=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac{ij}{gcd(i,j)}\] \[=\sum\limits_{i=1}…
题目 弱化版题目的传送门([BZOJ2154]Crash的数字表格) 加强版题目的传送门([BZOJ2693]jzptab) 思路&解法 题目是要求: \(\sum\limits_{i = 1}^{n}\sum\limits_{j = 1}^{m}lcm(i, j)\) 于是我们可以把式子化成这样: \[\sum_{i = 1}^{n}\sum_{j = 1}^{m}\frac{ij}{gcd(i, j)}\] 然后我们枚举gcd \[\sum_{i = 1}^{n}\sum_{j = 1}^{…
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(…
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x,y) N,M<=10000000T<=10000N,M <= 10000000\newline T<= 10000N,M<=10000000T<=10000 题目分析 直接开始变换,假设N<M Ans=∑x=1N∑y=1Mxy(x,y)=∑T=1N1T∑x=1N∑y=…
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] \[=\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{i j}{\mathrm{gcd}(i, j)}\] \[=\sum_{g=1}^{n} \sum_{i=1}^{n/g} \s…
Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张NM的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4 5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12…
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\large \sum_{i=1}^n\sum_{j=1}^m lcm(i,j)\) \(lcm\)没法玩,我们转到\(gcd\)形式: \(\large \sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{gcd(i,j)}\) 根据套路,我们去枚举\(gcd\) \(\large \s…
题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 \[\sum\limits_{i=1}^n\sum\limits_{j=1}^m\operatorname{lcm}(i,j)\bmod 20101009 \] 数据范围:\(1\le n,m\le 10^7\). 作为写出了最暴力的做法的蒟蒻,来推个式子. \(n\le m\),一气呵成: \[\begi…
Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 1…
P1829 [国家集训队]Crash的数字表格 原题传送门 前置芝士 莫比乌斯反演 乘法逆元 数论分块 正文 //补充:以下式子中的除法均为整除 由题目可以得知,这道题让我们所求的数,用一个式子来表达即为:\(\boxed{ANS=\sum_{i=1}^n \sum_{j=1}^m LCM(i,j)}\) 而根据莫比乌斯反演的内容,我们可以对右边的式子进行进一步的推导: \[\begin{align} \sum_{i=1}^n \sum_{j=1}^m LCM(i,j)&=\sum_{i=1}^…