首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
「SCOI2016」美味
】的更多相关文章
「SCOI2016」美味 解题报告
「SCOI2016」美味 状态极差无比,一个锤子题目而已 考虑每次对\(b\)和\(d\)求\(c=d \ xor \ (a+b)\)的最大值,因为异或每一位是独立的,所以我们可以尝试按位贪心. 如果要求\(c\)的从低到高第\(i\)位为\(0\)(最低位为第\(0\)位),那么此时\(c\)的更高位是确定好的了 \[ \_\_\_\_\_\_\_01111111\\ \_\_\_\_\_\_\_00000000 \] 这是\(c\)的上界和下界,分别减去\(b\)后,得到\(a\)需要满足的…
loj#2016. 「SCOI2016」美味
题目链接 loj#2016. 「SCOI2016」美味 题解 对于不带x的怎么做....可持久化trie树 对于带x,和trie树一样贪心 对于答案的二进制位,从高往低位贪心, 二进制可以表示所有的数,那么每一位的选取情况,对于之后的可选区间也是一定的 贪心时,判断当前位,是否可以为1, 用线段树维护一下,每次走左儿子代表这一位选了1,走又儿子为选了0,这样区间是不交 对于b的限制,改一下查询的区间就行了 代码 #include<cstdio> #include<algorithm>…
「SCOI2016」美味
「SCOI2016」美味 题目描述 一家餐厅有 \(n\) 道菜,编号 \(1 \ldots n\) ,大家对第 \(i\) 道菜的评价值为 \(a_i \:( 1 \leq i \leq n )\).有 \(m\) 位顾客,第 \(i\) 位顾客的期望值为 \(b_i\),而他的偏好值为 \(x_i\).因此,第 \(i\) 位顾客认为第 \(j\) 道菜的美味度为 \(b_i\ \text{xor} \ (a_j+x_i)\) (\(\text{xor}\) 表示异或运算). 第 \(i\)…
AC日记——「SCOI2016」美味 LiBreOJ 2016
#2016. 「SCOI2016」美味 思路: 主席树: 代码: #include <bits/stdc++.h> using namespace std; #define maxa 262143 #define maxn 200005 #define maxtree maxa*40 ],val[maxtree],L[maxtree],R[maxtree]; int root[maxn],mid[maxtree],tot; inline void in(int &now) { ; ')…
【LOJ】#2016. 「SCOI2016」美味
题解 做了一下SCOI2015,于是决定搬运SCOI2016= v = 如果没有加法,我们可以向左向右节点查找 每个总权值是2^18 - 1,然后左右分,那么每次是一个完整的节点 如果有了加法,那么我们如果希望有数满足某一位是1或者0,是一段取值的区间,我们要保证这个区间的左右端点减少x后这个区间里还有值 我们可以通过一次\(\log n\)的操作完成这个东西 那么我们二分的话,复杂度也是\(\log n\)的 所以总复杂度就是\(O(m \log^2 n)\)的 代码 #include <bi…
loj2016 「SCOI2016」美味
trie 树思想运用到主席树上orz #include <iostream> #include <cstdio> using namespace std; int n, m, a[200005], cnt, rot[200005], bb, xx, uu, vv; struct Node{ int l, r, sum; }nd[5000005]; int build(int l, int r){ int o=++cnt; if(l==r) ; else{ int mid=(l+r)…
「SCOI2016」围棋 解题报告
「SCOI2016」围棋 打CF后困不拉基的,搞了一上午... 考虑直接状压棋子,然后发现会t 考虑我们需要上一行的状态本质上是某个位置为末尾是否可以匹配第一行的串 于是状态可以\(2^m\)压住了,但还是会T 考虑到复杂度瓶颈在于每行的状态都要枚举上一行的状态,是按行转移的. 那么如果做一个轮廓线,就可以按格子转移 考虑有那些状态,当前格子\(i,j\),当前轮廓线是否可以匹配第一行的串的状态\(s\) 然后你试试发现如果想好好转移 得存一个\((i,j)\)匹配到第一行串的位置\(x\),和…
「SCOI2016」妖怪 解题报告
「SCOI2016」妖怪 玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水 首先要最小化 \[ \max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i \] \(k\)是大于0的正实数 最大值显然在上凸包上,先把上凸包搞出来 然后每个点成为最大值时,\(k\)都有个取值范围(就是它左边或者右边的点成为最大值时) 然后对每个点用均值不等式得到最小值为 \[ \begin{aligned} z&=kx+\frac{1}{k}y+x+y\\ &\ge2\s…
「SCOI2016」萌萌哒 解题报告
「SCOI2016」萌萌哒 这思路厉害啊.. 容易发现有个暴力是并查集 然后我想了半天线段树优化无果 然后正解是倍增优化并查集 有这个思路就简单了,就是开一个并查集代表每个开头\(i\)每个长\(2^j\)的区间的归属 然后合并就随便合并 最后需要\(2^0\)的信息,从上面把信息分裂传下来就好了 Code: #include <cstdio> #include <cctype> const int N=1e5+10; template <class T> void r…
「SCOI2016」背单词 解题报告
「SCOI2016」背单词 出题人sb 题意有毒 大概是告诉你,你给一堆n个单词安排顺序 如果当前位置为x 当前单词的后缀没在这堆单词出现过,代价x 这里的后缀是原意,但不算自己,举个例子比如abc的后缀是bc和c 否则 如果它的后缀(指在n个单词中的)在1~x-1全部出现了,代价为x-最后一个后缀的位置y 如果没有全部出现,代价n^2 看我气的连latex都懒得用了 然后你发现按后缀建字典树就可以了 然后你发现直接按子树大小贪心就可以了 但是我一开始偷懒就直接在trie上贪心走子树,这样是不行…