crt,excrt学习总结】的更多相关文章

\(crt,Chinese\ Remainder\ Theorem\) 概述 前置技能:同余基础性质,\(exgcd\). \(crt\),中国剩余定理.用于解决模数互质的线性同余方程组.大概长这样: \[ \begin{equation} \left\{ \begin{array}{lr} x\equiv a_1(mod\ m_1),\\ x\equiv a_2(mod\ m_2),\\ x\equiv a_3(mod\ m_3),\\ ......\\ x\equiv a_n(mod\ m_…
非扩展 用于求解线性同余方程组 ,其中模数两两互质 . 先来看一看两个显然的定理: 1.若 x \(\equiv\) 0 (mod p) 且 y \(\equiv\) 0 (mod p) ,则有 x+y \(\equiv\) 0 (mod p) 2.若 x \(\equiv\) b (mod p) 且 y \(\equiv\) 0 (mod p), 则有 x+y \(\equiv\) b (mod p) (0$\leq $b<p) 则整个方程组可以写为 b1 \(\begin{bmatrix}1…
这玩意解决的是把同余方程组合并的问题. CRT的核心思想和拉格朗日插值差不多,就是构造一组\(R_i\)使得$\forall i,j(i \neq j) $ \[R_im_i = 1, R_im_j = 0 \] 有了思路后这玩意随便构造一下就出来了,式子里面出现了一些奇怪的逆元,所以要求模数互质 现在考虑扩展CRT,模数不互质了 本质思路是合并两个同余方程组 发现同余条件等价于\(x=k_1m_1+a_1=k_2m_2+a_2\) 怎么求出其中的一个\(k\)呢?其实也就是\(k_1m_1-k…
前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这么抽象的东西我怎么可能会写 前置技能 gcd/lcm exgcd 快速乘 参考资料 一篇未通过的洛谷日报 by AH_ljq 比较直观的 exCRT 学习笔记 by Milky Way 我之前写过的 exgcd 学习笔记 huyufeifei 对 CRT 的劝退 用途 用于求一个关于 \(x​\)…
[笔记] CRT & exCRT 构造法 求多组\(x \equiv r_i (\bmod d_i)\)的解,\(d_i\)互质 余数\((r_i = remainder)\),除数\((d_i=divisor)\) 我们想啊,如果我们能找到一个数 \(k1\equiv1(mod\text{ }3)\)是 \(5\) 和 \(7\) 的倍数 一个数 $k2\equiv1(mod\text{ }5) $是\(3\)和\(7\)的倍数 一个数 $k3\equiv1(mod\text{ }7) $是\…
蒟蒻maomao终于学会\(CRT\)啦!发一篇博客纪念一下(还有防止忘掉) \(CRT\)要解决的是这样一个问题: \[x≡a_1​(mod m_1​)\] \[x≡a_2​(mod m_2​)\] \[x≡a_3​(mod m_3​)\] \[...\] \[x≡a_k​(mod m_k​)​\] 其中,\(m\)之间两两互质.这个问题有一个通解是\(\sum a_i * M * t_i / m_i\),其中\(t_i\)代表方程\(M * t_i / m_i ≡ 1\)的最小正整数解. 为…
前言: 中国剩余定理又名孙子定理.因孙子二字歧义,常以段子形式广泛流传. 中国剩余定理并不是很好理解,我也理解了很多次. CRT 中国剩余定理 中国剩余定理,就是一个解同余方程组的算法. 求满足n个条件的最小的x. 看起来很麻烦. 先找一个特殊情况:$m_1,m_2,...m_n$两两互质. 这个时候,构造$M=m_1*m_2*...m_n$; 令$M_i=M/m_i$; 所以,构造$n$个数,其中第$i$个数是除$i$之外的其他所有数的倍数,并且第$i$个数$mod m_i =1$ 即:$M_…
CRT从各种方面上都吊打exCRT啊...... 短,好理解... 考虑构造bi使得bi % pi = ai,bi % pj = 0.然后全加起来就行了. 显然bi的构造就是ai * (P/pi) * inv(P/pi). LL a = , p = MO - ; ; i <= ; i++) { a = (a + ans[i] * (p / mod[i]) % p * qpow(p / mod[i], mod[i] - , mod[i]) % p) % p; } exCRT: 是这样的,重新手推了…
中国剩余定理 别人的blog 假设现在有关于x的同余方程组(p1,p2均为质数) \(x=a_1\pmod {p_1}\) \(x=a_2\pmod {p_2}\) 可以转化成如下形式 \(x=a_1+k_1p_1\) \(x=a_2+k_2p_2\) 联立就有\(a_1+k_1p_1=a_2+k_2p_2\) 显然可以扩欧求一组特解,设为\(k_1',k_2'\) 那么全部的解可以表示成 \(k_1=k_1'+p_2t\) \(k_2=k_2'+p_1t\) 其中t为整数 回带就有\(x=a_…
设正整数$m_1, m_2, ... , m_r$两两互素,对于同余方程组 $x ≡ a_1 \ (mod \ m_1)$ $x ≡ a_2 \ (mod \ m_2)$ $...$ $x ≡ a_r \ (mod \ m_r)$ 有整数解.设$P = \prod\limits_{k = 1}^{r} m_k$,则有 $$x ≡ a_1 M_1 M_1^{-1} + a_2 M_2 M_2^{-1} + ... + a_r M_r M_r^{-1}\ ( \ mod \ P)$$ 其中,$M_i…
其实呢,扩展中国剩余定理还有一种理解方式:就是你有一坨东西,形如:$A[i]\equiv B[i](mod$ $P[i])$. 对于这个东西,你可以这么思考:如果最后能求出一个解,那么这个解的增量一定是 $lcm(P[1],P[2].....).$ 所以,只要你能找到一坨 $P[i]$,使得它们的 $lcm$ 等于你想要的东西,你就可以用 $excrt$来解. p话扯完了,我们步入正题:假设没有障碍,有 $n$ 行 $m$ 列,那么答案即为 $C_{n+m}^{n}.$ 这个东西就代表你一共会走…
欧拉定理不要忘记!! #include <bits/stdc++.h> #define N 100000 #define ll long long #define ull unsigned long long #define setIO(s) freopen(s".in","r",stdin) using namespace std; int array[10]={2,3,4679,35617}; ll mult(ll x,ll y,ll mod) {…
扩展中国剩余定理 (ExCRT) 学习笔记 预姿势: 扩展中国剩余定理和中国剩余定理半毛钱关系都没有 问题: 求解线性同余方程组: \[ f(n)=\begin{cases} x\equiv a_1\pmod {m_1}\\ x\equiv a_2\pmod {m_2}\\ ... ...\\ x\equiv a_n\pmod {m_n}\\ \end{cases}\] 的解\(x\). \(m\)两两之间不一定互质! 解法: ExCRT的基本思想是将方程两两合并,合并规则如下: 定义 \[in…
noip一轮复习真的要开始啦!!! 大概顺序是这样的 1.数学 2.搜索贪心 3.数据结构 4.图论 5.dp 6.其他 数学 1.数论 数论被称为数学皇冠上的明珠,他的重要性主要在于它是其他学习的祖师,基本上什么代数问题都可以通过数论推导,其实有的图论也是(数学上). 我们信息中的数论主要是说对整除同余的研究~~~~~~~ ①:唯一分解定理与素数 这个之前我们先要讲素数(定义全部掠过) 素数筛法: #include<iostream> #include<cstdio> #incl…
Preface 老叶说了高中停课但是初中不停的消息后我就为争取民主献出一份力量 其实就是和老师申请了下让我们HW的三个人听课结果真停了 那么还是珍惜这次机会好好提升下自己吧不然就\(AFO\)了 List Luogu P4198 楼房重建 把高度化为斜率,然后就是个动态最长上升子序列的问题了,线段树上二分即可解决,而且可以做到\(O(n\log n)\) NOIP模拟赛10.24 实力翻车,T1主席树裸题切了,T2想了贪心+前缀和+二分正解,最后1min写完发现忘记判边界了炸到60,T3以为很难…
目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔兰数 常用数学公式 技巧经验 容斥 组合计数 区间筛 博弈 有趣的式子 gcd有关 数论模板库 黑科技 \(long\ long\)相乘取模 子集枚举 高维前缀和 各种线性筛 高级算法 Exgcd Lucas EXCRT BSGS 高斯消元 线性基 裴蜀定理 FFT 拉格朗日插值 NTT FWT 数论 Tag…
upd:19.4.5 放出来了.如果明天考了我没复习到的认了.考到了复习了的还没拿到理想分的就回来谢罪(bushi www SDOI一轮倒计时4天啦w 所以得有个小计划吧QwQ 4.2 目标:BZOJ5407 模板: ✔最小树形图 //Love and Freedom. #include<cstdio> #include<cmath> #include<algorithm> #include<cstring> #define ll long long #de…
ZROI 游记 在自闭中度过了17天 挖了无数坑,填了一点坑 所以还是有好多坑啊zblzbl 挖坑总集: 时间分治 差分约束 Prufer序列 容斥 树上数据结构 例题C (和后面的例题) 点分 最大流.费用流.上下界 Hero meet devil(dp套dp) Pollards' Rho CRT & exCRT BSGS & exBSGS NTT & FFT 以及 分治NTT & FFT (& 原根) Cipolla 算法(二次剩余) Min25 ZROI D1…
TOC 建议使用 Ctrl+F 搜索 . 目录 小工具 / C++ Tricks NOI Linux 1.0 快速读入 / 快速输出 简易小工具 无序映射器 简易调试器 文件 IO 位运算 Smart Double 数论 GCD 快速幂相关 分数模板类 EI 的取模还原分数 逆元 整除分块 线性筛 扩展欧几里得算法 (exgcd) 类欧几里得算法 中国剩余定理 (CRT) & exCRT BSGS & exBSGS 积性函数筛子 组合计数 组合数取模 伯努利数 斯特林数 Catalan 数…
中国剩余定理CRT 中国剩余定理是要求我们解决这样的一类问题: \[\begin{cases}x\equiv a_1\pmod {b_1} \\x\equiv a_2 \pmod{b_2}\\...\\x\equiv a_n\pmod{b_n} \end{cases}\] 其中\(b_1,b_2,...,b_n\)互质. 我们先令\(m=\prod_{i=1}^{n}b_i,w_i=m/b_i\) 那么有\(gcd(m,w_i)==1\) 我们对于\(w_ix'+my'= 1\)解出来\(x',…
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Robin+Pollard_Rho) 本文概要 1. 基础回顾 2. 中国剩余定理 (CRT) 及其扩展 3. 卢卡斯定理 (lucas) 及其扩展 4. 大步小步算法 (BSGS) 及其扩展 5. 原根与指标入…
前置知识 1. a%b=d,c%b=e, 则(a+c)%b=(d+e)%b(正确性在此不加证明) 2. a%b=1,则(d\(\times\)a)%b=d%b(正确性在此不加证明) 下面先看一道题(改编自曹冲养猪): 烤绿鸟的故事 题目描述: mian包是一个贪吃的孩子,这天,他买了一堆绿鸟吃.当然他的妈妈并不想让他吃太多食物(因为那样会发胖),为了避免老妈的唠叨,他决定不告诉他的妈妈绿鸟数量,而是将绿鸟的数量x用以下式子来描述 \[\begin{cases}x≡b_1 (mod a_1)\\x…
Linux学习笔记(7)CRT实现windows与linux的文件上传下载 按下Alt + p 进入SFTP模式,或者右击选项卡进入 命令介绍 help 显示该FTP提供所有的命令 lcd 改变本地上传目录的路径 pwd 查询linux主机所在目录(也就是远程主机目录) cd 改变远程上传目录 lpwd 查询本地目录 get 将远程目录中文件下载到本地目录 ls 查询连接到当前linux主机所在目录有哪些文件 put 将本地目录中的文件上传到远程主机(linux) lls 查询当前本地上传目录有…
1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x*y/gcd(x,y); } 2.扩欧:exgcd:对于a,b,一定存在整数对(x,y)使ax+by=gcd(a,b)=d ,且a,b互质时,d=1. x,y可递归地求得. 我懒得改返回值类型了 long long exgcd(long long a,long long b,long long &x,…
中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv a_2 \pmod{m_2} \\ &... \\ x &\equiv a_n \pmod{m_n} \end{aligned} \right. \] \(m_1, m_2 , ... , m_n\)两两互质 令\(M = \prod_{i=1}^{n} m_i\),求\(x \mod M\)…
中国剩余定理 中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式. \[ \begin{aligned} &现在有方程组:\\ &(S):\begin{cases} x\equiv a_1(mod\space m_1)\\ x\equiv a_2(mod\space m_2)\\ \space\space\space\space. \\ \space\space\space\space. \…
数论守门员二号 =.= 中国剩余定理: 1.一次同余方程组: 一次同余方程组是指形如x≡ai(mod mi) (i=1,2,…,k)的同余方程构成的组 中国剩余定理的主要用途是解一次同余方程组,其中m1,m2,...,mk互质 2.中国剩余定理: 令M=m1*m2*...*mk(即所有m的lcm)ti为同余方程M/mi*ti≡1(mod mi)的最小正整数解 则存在解x=∑ai*M/mi*ti 通解为x+i*M 最小非负整数解为(x%M+M)%M (我承认这段是抄的orz 原文看起来更方便:ht…
1.解同余方程: 同余方程可以转化为不定方程,其实就是,这样的问题一般用拓展欧几里德算法求解. LL exgcd(LL a,LL b,LL &x,LL &y){ if(!b){ x=;y=; return a; } LL gcd=exgcd(b,a%b,x,y); LL t=x; x=y; y=t-a/b*x; return gcd; } 2.解同余方程组(任意两个模意义互质)用CRT. LL CRT(){ LL ans=,M=,x,y; ;i<=n;i++) M*=m[i]; ;i…
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前置知识点:\(Exgcd\) 这两个东西都是用来解同余方程组的 形如 \[ \left\{ \begin{aligned} x\equiv B_1(mod\ W_1)\\ x\equiv B_2(mod\ W_2)\\ \cdots\\ x\equiv B_n(mod\ W_n)\\ \end{aligne…
引入 常想起在空间里见过的一些智力题,这个题你见过吗: 一堆苹果,\(3\)个\(3\)个地取剩\(1\)个,\(5\)个\(5\)个地取剩\(1\)个,\(7\)个\(7\)个地取剩\(2\)个,苹果最少有几个? 够焦头烂额的(雾 大力算可知至少有16个. 我们把它抽象成数学问题: 求满足 \[\begin{cases}x\equiv1\pmod{3}\\x\equiv1\pmod{5}\\x\equiv2\pmod{7}\end{cases}\] 的最小正整数\(x\). 感性地猜到有一个长…