PCA算法和SVD】的更多相关文章

如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量产生旋转的效果,那么这些向量就称为这个矩阵的特征向量,伸缩的比例就是特征值.这里可以将特征值为负,特征向量旋转180度,也可看成方向不变,伸缩比为负值.所以特征向量也叫线性不变量 PCA的物理意义: 各种不同的信号(向量)进入这个系统中后,系统输出的信号(向量)就会发生相位滞后.放大.缩小等各种纷乱的变化.但只有特征信号(特征向量)被稳定的发生放大(或缩小)的变化.如果把系统的输出端口接入输入端口,那么只有特征信号(特征向量)第二次被放大…
第十三章 利用PCA来简化数据 一.降维技术 当数据的特征很多的时候,我们把一个特征看做是一维的话,我们数据就有很高的维度.高维数据会带来计算困难等一系列的问题,因此我们需要进行降维.降维的好处有很多,比如:降低算法开销,让数据更加便于使用,去燥,数据更易于显示等等. 目前的降维技术主要有三种:第一种主成分分析(PCA),也就是本章介绍的内容,它只保留方差方向最大的若干个特征:第二种是因子分析,这种方法它的思想就是认为数据是由隐参数和噪声混合而成,如果我们能够找到隐参数和噪声就能够实现降维:第三…
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,PCA和SVD涉及了大量的矩阵计算,两者都是运算量很大的模型,但其实,SVD有一种惊人的数学性质,即是它可以跳过数学神秘的宇宙,不计算协方差矩阵,直接找出一个新特征向量组成的n维空间,而这个n维空间就是奇异值分解后的右矩阵(所以一开始在讲解降维过程时,我们说”生成新特征向量组成的空间V",并非巧合,而…
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现:并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现:1959年,艾兹格·迪科斯彻再次发现了该算法.因此,在某些场…
一. Online Judge简介: Online Judge系统(简称OJ)是一个在线的判题系统.用户可以在线提交程序多种程序(如C.C++.Pascal)源代码,系统对源代码进行编译和执行,并通过预先设计的测试数据来检验程序源代码的正确性. 一个用户提交的程序在Online Judge系统下执行时将受到比较严格的限制,包括运行时间限制,内存使用限制和安全限制等.用户程序执行的结果将被Online Judge系统捕捉并保存,然后再转交给一个裁判程序.该裁判程序或者比较用户程序的输出数据和标准输…
BM算法研究了很久了,说实话BM算法的资料还是比较少的,之前找了个资料看了,还是觉得有点生涩难懂,找了篇更好的和算法更好的,总算是把BM算法搞懂了. 1977年,Robert S.Boyer和J Strother Moore提出了另一种在O(n)时间复杂度内,完成字符串匹配的算法,这个算法在单模匹配上比KMP算法还要出色 PS:其BM算法在跳转优化上的确比KMP算法要好很多,能在O(N)的上界就完成匹配了,但是不是绝对的,我们讲到后面再来说这个问题. 我们知道,KMP算法之所以能那么快,是因为他…
前言: 最近研究了box2dweb, 觉得自己编写Html5版台球游戏的时机已然成熟. 这也算是圆自己的一个愿望, 一个梦想. 承接该序列的相关博文: • 台球游戏核心算法和AI(1) 同时结合html5的学习笔记: • box2dweb 学习笔记--sample讲解  这篇文章, 具体讲解台球游戏的box2d模型抽象, 并给出一个初步版本. 演示: 台球游戏的雏形如下所示: 该台球游戏, 改编自box2dweb的demo程序, 可用鼠标拖动球来移动. 代码的下载链接: http://pan.b…
本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了其比较容易实现并行化. 学习mahout就先从简单的kmeans算法开始学起,就当抛砖引玉了. 1. 首先来简单的回顾一下KMeans算法: (1)   根据事先给定的k值建立初始划分,得到k个Cluster,比如,可以随机选择k个点作为k个Cluster的重心,又或者用其他算法得到的Cluster…
系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章节标题所示,这两章讲了无监督机器学习方法中的关联分析问题.关联分析可以用于回答"哪些商品经常被同时购买?"之类的问题.书中举了一些关联分析的例子: 通过查看哪些商品经常在一起购买,可以帮助商店了解用户的购买行为.这种从数据海洋中抽取的知识可以用于商品定价.市场促销.存活管理等环节. 在美国…
本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:…