UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13015 143295493160 Solution 这道题我用莫比乌斯反演和欧拉函数都写了一遍,发现欧拉函数比莫比乌斯反演优秀? 求所有\(gcd=k\)的数对的个数,记作\(f[k],ans=\sum_{i=1}^{n}(f[i]-1)\),为什么还要-1,我们注意到\(j=i+1\),自己与自己…
题目链接:https://vjudge.net/problem/UVA-11426 题意: 求 ∑ gcd(i,j),其中 1<=i<j<=n . 题解:1. 欧拉函数的定义:满足 0<x<n 且 gcd(x,n) = 1 的x有euler[n]个. 2. 可以推论出:满足 0<2*x<2*n 且 gcd(2*x,2*n) = 2 的2*x同样有euler[n]个,推向一般:满足 0<k*x<k*n 且 gcd(k*x,k*n) = k 的k*x有eu…
题意:求sum(gcd(i,j),1<=i<j<=n)1<n<4000001 思路: 1.建立递推关系,s(n)=s(n-1)+gcd(1,n)+gcd(2,n)+……+gcd(n-1,n); 2.设f(n)=gcd(1,n)+gcd(2,n)+……+gcd(n-1,n). gcd(x,n)=i是n的约数(x<n),按照这个约数进行分类.设满足gcd(x,n)=i的约束有g(n,i)个,则有f(n)=sum(i*g(n,i)). 而gcd(x,n)=i等价于gcd(x/…
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&category=473&problem=2421&mosmsg=Submission+received+with+ID+13800900 Given the value of N, you will have to find the value of G. The definition…
题面 莫反是不可能莫反的,这辈子都不可能莫反了 题目要求的是 \[ \sum\limits_{i=1}^n \sum\limits_{j=i+1}^n \gcd(i,j) \] 稍微变个亚子 \[ \sum\limits_{i=1}^n \sum\limits_{j=1}^{i-1} \gcd(i,j) \] 考虑求\(f(n)=\sum\limits_{i=1}^{n-1} \gcd(n,i)\) 首先\(\gcd(n,i) \mid n\),考虑枚举\(\gcd\)的值 \[ f(n)=\s…
https://www.luogu.org/problemnew/show/UVA11424 原本以为是一道四倍经验题来的. 因为输入的n很多导致像之前那样 \(O(n)\) 计算变得非常荒谬. 那么我们就需要引入一个整除分块! 首先预处理欧拉函数的前缀和,然后丢进分块里面搞一搞. 那么就是 \(O(n+t\sqrt{n})\) #include<bits/stdc++.h> using namespace std; #define ll long long #define N 4000005…
[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 \[ans=\sum_{d=1}^nd\sum_{i=1}^{n/d}\mu(i)[\frac{n}{id}]^2\] 令\(T=id\) 然后把\(T\)提出来 \[ans=\sum_{T=1}^n[\frac{n}{T}]^2\sum_{d|T}d\mu(\frac{T}{d})\] 后面那一堆…
转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Problem JGCD Extreme (II)Input: Standard Input Output: Standard Output Given the value of N, you will have to find the value of G. The definition of G is given below: Here GCD(i,j) means the…
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gcd(1, n) + gcd(2, n) + ... + gcd(n - 1, n).这种话,就能够得到递推式S(n) = f(2) + f(3) + ... + f(n) ==> S(n) = S(n - 1) + f(n);. 这样问题变成怎样求f(n).设g(n, i),表示满足gcd(x, n)…
[CJOJ2512]gcd之和(莫比乌斯反演) 题面 给定\(n,m(n,m<=10^7)\) 求 \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\] 题解 首先把公因数直接提出来 \[\sum_{d=1}^nd\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[gcd(i,j)==1]\] 很明显 设 \[f(x)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)==x]\] \[g(x)=\sum_{x|d}f(d)\] \[g(…