Spark Streaming简介】的更多相关文章

简介: SparkStreaming是一套框架. SparkStreaming是Spark核心API的一个扩展,可以实现高吞吐量的,具备容错机制的实时流数据处理. 支持多种数据源获取数据: Spark Streaming接收Kafka.Flume.HDFS等各种来源的实时输入数据,进行处理后,处理结构保存在HDFS.DataBase等各种地方. Dashboards:图形监控界面,Spark Streaming可以输出到前端的监控页面上. *使用的最多的是kafka+Spark Streamin…
离线计算和实时计算对比 1)数据来源 离线:HDFS历史数据 数据量比较大 实时:消息队列(Kafka),实时新增/修改记录过来的某一笔数据 2)处理过程 离线:MapReduce: map+reduce 实时:Spark(DStream/SS) 3)处理速度 离线:慢 实时:快速 4)进程 离线:启动+销毁 实时:7*24,永不停止的 实时流处理框架对比 1)Apache Storm http://storm.apache.org open source distributed realtim…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理…
从storm到spark streaming,再到flink,流式计算得到长足发展, 依托于spark平台的spark streaming走出了一条自己的路,其借鉴了spark批处理架构,通过批处理方式实现了实时处理框架.为进一步了解spark streaming的相关内容,飞马网于3月20日晚邀请到历任百度大数据的高级工程师-王富平,在线上直播中,王老师针对spark streaming高级特性以及ndcg计算实践进行了分享. 以下是本次直播的主要内容: 一.Spark Streaming简介…
一.spark streaming简介 Streaming是一种数据传输技术,它把客户机收到的数据变成一个稳定连续的流,源源不断的输出,使用户听到的声音和图像十分稳定,而用户在整个文件传输完成开始前就可以浏览文件. 常见的流式计算框架: l Apache storm l Spark streaming l Apache samza 上述三种实时计算系统都是开源分布式系统,具有低延迟,可扩展和容错性诸多优点,他们的共同特色在于:允许你在运行数据流代码时,将任务分配到一系列具有容错能力的计算机上并行…
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/4747735.html 1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP…
1.Spark Streaming简介 官方网站解释:http://spark.apache.org/docs/latest/streaming-programming-guide.html 该博客转载于:http://www.cnblogs.com/shishanyuan/p/4747735.html 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitt…
实时计算介绍 Spark Streaming, 其实就是一种Spark提供的, 对于大数据, 进行实时计算的一种框架. 它的底层, 其实, 也是基于我们之前讲解的Spark Core的. 基本的计算模型, 还是基于内存的大数据实时计算模型. 而且, 它的底层的组件或者叫做概念, 其实还是最核心的RDD.     针对实时计算的特点, 在RDD之上, 进行了一层封装, 叫做DStream. 其实, 学过了Spark SQL之后, 你理解这种封装就容易了. 之前学习Spark SQL是不是也是发现,…
1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafka.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理.最后还可以将处理结果存储到文件系统,数据库和实时仪表盘.在“One Stack rule t…
提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可以分为如以下三个类型. 复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间. 基于历史数据的交互式查询(interactive query),通常的时间跨度在数十秒到数分钟之间. 基于实时数据流的数据处理(streaming data proces…