之前神经网络火过一段时间,但是后来又淡出了,后来又火了,尤其是到2012年真的像发水一样. 之前为什么不火了呢,因为人们发现网络浅了吧,没什么优势.网络深了吧,又会出现vanishing gradient,无法训练. 看文章也没看到有特别提到为什么现在又能训练了. 调研了一下,是因为几个原因吧. 1. 现在的网络中的激活函数变了,由原来的sigmoid变成了relu,这个从relu的分布来看,限制了误差的无限变化. 2. 计算资源变好了.原来的计算资源比较差,训练的话不能一点点调,但是学习率设置…
(1)梯度不稳定问题: 什么是梯度不稳定问题:深度神经网络中的梯度不稳定性,前面层中的梯度或会消失,或会爆炸. 原因:前面层上的梯度是来自于后面层上梯度的乘乘积.当存在过多的层次时,就出现了内在本质上的不稳定场景,如梯度消失和梯度爆炸. (2)梯度消失(vanishing gradient problem): 原因:例如三个隐层.单神经元网络: 则可以得到: 然而,sigmoid方程的导数曲线为: 可以看到,sigmoid导数的最大值为1/4,通常abs(w)<1,则: 前面的层比后面的层梯度变…
转自https://blog.csdn.net/guoyunfei20/article/details/78283043 神经网络中梯度不稳定的根本原因:在于前层上的梯度的计算来自于后层上梯度的乘积(链式法则).当层数很多时,就容易出现不稳定.下边3个隐含层为例: 其b1的梯度为: 加入激活函数为sigmoid,则其导数如下图: sigmoid导数σ'的最大值为1/4.同常一个权值w的取值范围为abs(w) < 1,则:|wjσ'(zj)| < 1/4,从而有: 从上式可以得出结论:前层比后层…
The unstable gradient problem: The fundamental problem here isn't so much the vanishing gradient problem or the exploding gradient problem. It's that the gradient in early layers is the product of terms from all the later layers. When there are many…
NO.1卷积神经网络基本概念 CNN是第一个被成功训练的多层深度神经网络结构,具有较强的容错.自学习及并行处理能力.最初是为识别二维图像而设计的多层感知器,局部连接和权值共享网络结构 类似于生物神经网络. 卷积神经网络的权值共享(weight sharing)的网络结构显著降低了模型的复杂度,减少了权值的数量. 神经网络NN的基本组成包括输入层,隐藏层和输出层.卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer,也叫下采样层). 卷积层通过一块块的卷积核(conventi…
Introduction Optimization is always the ultimate goal whether you are dealing with a real life problem or building a software product. I, as a computer science student, always fiddled with optimizing my code to the extent that I could brag about its…
Time Series Anomaly Detection in Network Traffic: A Use Case for Deep Neural Networks from:https://jask.com/time-series-anomaly-detection-in-network-traffic-a-use-case-for-deep-neural-networks/ Introduction As the waves of the big data revolution cas…
http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural Networks  Published: 09 Oct 2015  Category: deep_learning Tutorials Popular Training Approaches of DNNs — A Quick Overview https://medium.com/@asjad/p…
Deep Learning in a Nutshell: Core Concepts This post is the first in a series I’ll be writing for Parallel Forall that aims to provide an intuitive and gentle introduction todeep learning. It covers the most important deep learning concepts and aims…
Deep Learning in a Nutshell: Core Concepts Share:   Posted on November 3, 2015by Tim Dettmers 7 CommentsTagged cuDNN, Deep Learning, Deep Neural Networks, Machine Learning,Neural Networks   This post is the first in a series I’ll be writing for Paral…
作者:许铁-巡洋舰科技链接:https://www.zhihu.com/question/37082800/answer/126430702来源:知乎著作权归作者所有,转载请联系作者获得授权. 作者:许铁-巡洋舰科技链接:循环神经网络RNN打开手册 - 混沌巡洋舰 - 知乎专栏来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 最近朋友前小伙伴都已经传播疯了的谷歌翻译,实现了令人惊艳的性能.这里的技术核心, 就是RNN- 我们常说的传说中的循环神经网络. RNN可以称…
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background…
为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定,而不同序列的输入.输出可能有不同的长度,选择最大长度并对短序列进行填充(pad)不是一种很好的方式:2)全连接神经网络同一层的节点之间是无连接的,当需要用到序列之前时刻的信息时,全连接神经网络无法办到,一个序列的不同位置之间无法共享特征.而循环神经网络(Recurrent Neural Networ…
原文链接:https://yq.aliyun.com/topic/111 本文是对原文内容中部分概念的摘取记录,可能有轻微改动,但不影响原文表达. 08 - BP算法双向传,链式求导最缠绵 反向传播(Back Propagation,简称BP) 算法 在神经网络(甚至深度学习)参数训练中,BP算法占据举足轻重的地位. 实际上BP算法是一个典型的双向算法,但通常强调的是反向传播. 工作流程分两大步: 正向传播输入信号,输出分类信息(对于有监督学习而言,基本上都可归属于分类算法).简单说来,就是把信…
原ppt下载:pan.baidu.com/s/1nv54p9R,密码:3mty 需深入实践并理解的重要概念: Deep Learning: SoftMax Fuction(输出层归一化函数,与sigmoid相似的激活函数,用于解决分类问题(分类大于2时:sigmoid解决二分类问题)) 1) 2)每个neuron的softmax输出:,其中: DNN(Deep Neural Networks): MSE(Means Square Error,均方误差) / CE(Cross Entropy,交叉…
Using the latest advancements in AI to predict stock market movements 2019-01-13 21:31:18 This blog is copied from: https://github.com/borisbanushev/stockpredictionai In this notebook I will create a complete process for predicting stock price moveme…
目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做个总结,种种事情一直拖到现在,今天抽空赶紧将最后一篇补上.前面几篇博文中我们已经阐述了不论分词.词性标注亦或NER,都可以抽象成一种序列标注模型,seq2seq,就是将一个序列映射到另一个序列,这在NLP领域是非常常见的,因为NLP中语序.上下文是非常重要的,那么判断当前字或词是什么,我们必须回头看…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记1 Link: Hinton的CSC321课程笔记2 一年后再看课程,亦有收获,虽然看似明白,但细细推敲其实能挖掘出很多深刻的内容:以下为在线课程以及该笔记的课程重难点总结. Lecture 01 增强学习: (这是ng的拿手好戏,他做无人直升机可是做了好久)增强学习的输出是一个动作或者一系列的动作,通过与实际的场合下的环境互动来决定动作,增强学习的…
ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks by KOUSTUBH        this blog from: http://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/ Convolutional neural networks are fantastic for visual…
批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanishing Gradient Problem). 统计机器学习中有一个经典的假设:Source Domain 和 Target Domain的数据分布是一致的.也就是说,训练数据和测试数据是满足相同分布的.这是通过训练数据获得的模型能够在测试集上获得好的效果的一个基本保障. Convariate Shi…
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽善尽美的编译为中文呈现给大家,但我们一直在进步.一直在积累.一直在提高自己的专业性.两年来,机器之心编译团队整理过翻译词汇对照表「红宝书」,编辑个人也整理过类似的词典.而我们也从机器之心读者留言中发现,有些人工智能专业词汇没有统一的翻译标准,这可能是因地区.跨专业等等原因造成的.举个例子,DeepM…
I have had a hard time trying to understand recurrent model. Compared to Ng's deep learning course, I found Deep Learning book written by Ian, Yoshua and Aaron much easier to understand. This post is structure in following order: Intuitive interpreta…
Link of the Paper: https://arxiv.org/abs/1411.4389 Main Points: A novel Recurrent Convolutional Architecture ( CNN + LSTM ): both Spatially and Temporally Deep. The recurrent long-term models are directly connected to modern visual convnet models and…
Sequence Models This is the fifth and final course of the deep learning specialization at Coursera which is moderated by deeplearning.ai Here are the course summary as its given on the course link: This course will teach you how to build models for n…
Neural Networks and Deep Learning This is the first course of the deep learning specialization at Coursera which is moderated by moderated by DeepLearning.ai. The course is taught by Andrew Ng. Introduction to deep learning Be able to explain the maj…
不多说,直接上干货! 最近,在看论文,提及到这个修正线性单元(Rectified linear unit,ReLU). Deep Sparse Rectifier Neural Networks ReLu(Rectified Linear Units)修正线性单元(Rectified linear unit,ReLU) 激活函数实现–4 Rectified linear函数实现Rectified Linear Units ReLU 和sigmoid 函数对比 ReLU为什么比Sigmoid效果好…
出自 http://blog.csdn.net/cherrylvlei/article/details/53149381 导语 在深度神经网络中,通常使用一种叫修正线性单元(Rectified linear unit,ReLU)作为神经元的激活函数.ReLU起源于神经科学的研究:2001年,Dayan.Abott从生物学角度模拟出了脑神经元接受信号更精确的激活模型,如下图:  其中横轴是时间(ms),纵轴是神经元的放电速率(Firing Rate).同年,Attwell等神经科学家通过研究大脑的…
是近些年在机器视觉领域很火的模型,最先由 Yan Lecun 提出. 如果想学细节可以看 Andrej Karpathy 的 cs231n . How does it work? 给一张图片,每个圆负责处理图片的一部分. 这些圆就组成了一个 filter. filter 可以识别图片中是否存在指定的 pattern,以及在哪个区域存在.     下图中有4个filter,每个filter的平行的点会负责图片上相同的区域.     神经元利用 convolution 的技术查找pattern,简单…
https://www.youtube.com/watch?v=CXgbekl66jc&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49 https://www.bilibili.com/video/av65521101 因为之前有些基础,对于本视频课程的学习仅仅记录一些要点.目前只学习涉及深度学习和对抗攻击的部分. 1 Regression 通过Gradient Descent找到Loss Function的局部最优点.Gradient就是Loss Functio…
A Survey of Visual Attention Mechanisms in Deep Learning 2019-12-11 15:51:59 Source: Deep Learning on Medium Visual Glimpses and Reinforcement Learning The first paper we will look at is from Google’s DeepMind team: “ Recurrent Models of Visual Atten…