莫比乌斯反演+枚举除法的取值 第二种形式: f(n)表示gcd(x,y)=n的数量. F(n)表示gcd(x,y)是n的倍数的数量. /** 题目:Problem b 链接:https://vjudge.net/contest/178455#problem/G 题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) , 满足 a ≤ x ≤ b , c ≤ y ≤ d ,且 gcd(x,y) = k , gcd(x,y) 函数为 x 和 y 的最大公约数. 1≤n≤50000,1≤a≤b≤…
/** 题目:hdu1695 GCD 链接:http://acm.hdu.edu.cn/status.php 题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) , 满足 a ≤ x ≤ b , c ≤ y ≤ d ,且 gcd(x,y) = k ,(5,7),(7,5)看做同一对, gcd(x,y) 函数为 x 和 y 的最大公约数. 本题默认:a = c = 1; 0 < a <= b <= 100,000, 0 < c <= d <= 100,000,…
[BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[gcd(i,j)=k]\) \(T,a,b,c,d,k\le 5\times 10^4\) 分析 \(O(n^2)\)暴力显然是不可行的,我们考虑优化. 首先易得\(k\times gcd(i,j)=gcd(ki,kj)\),那么我们可以把a,b,c,d都除上k,问题就变成了\(\sum _{i=a…
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1…
2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Outp…
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x,y中都有n这个因子就好了,也就是[a/n]*[b/n]个数对(向下取整) 然后设题中所要求的为f[n],很容易得知,F[n]=∑f[d](n|d) 莫比乌斯反演可以得到f[n]=∑μ(d/n)F[d](n|d) 这样是O(n),然而数据范围5*10^4显然不能通过 f[n]=∑μ(d/n)[a/d][b/d]…
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j=c}^dgcd(i,j)=k\) 像二维前缀和一样容斥一下,输出就完了. 根据luogu某大佬的说法 开longlong的话会TLE.. 代码 //莫比乌斯反演 #include <bits/stdc++.h> using namespace std; const int N = 1e6 + 10…
题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta) = \sum_{i=1}^{\alpha}\sum_{j=1}^{\beta}[gcd(i, j) = k]\] 令\(A = \{ (x, y) | x < a\}\), \(B = \{(x, y)|y < c\}\), 根据容斥原理, \[|S| = |U| - |A| - |B| +…
题意: $\sum\limits_{\begin{array}{*{20}{c}}{a < = x < = b}\\{c < = y < = d}\end{array}} {\gcd (x,y) = = k} $ 解题关键: 现令$f(i)$表示有多少对${(x,y)}$满足 ${\gcd (x,y) =  = d}$,$1 <  = x <  = n,1 <  = y <  = m$ $F(d)$为有多少对${(x,y)}$满足 ${\gcd (x,y)…
点此看题面 大致题意: 一个长度为\(n\)的数组,实现两种操作:单点修改,给定\(i\)求\(\sum_{j=1}^na_j[gcd(i,j)=1]\). 莫比乌斯反演 考虑推一推询问操作的式子: \[\sum_{j=1}^na_j[gcd(i,j)=1]\] 按照莫比乌斯反演的一般套路,我们知道\(\sum_{p|x}\mu(p)=[x=1]\),因此我们枚举一个\(p\): \[\sum_{j=1}^na_j\sum_{p|i,p|j}\mu(p)\] 调整枚举顺序,得到: \[\sum_…