如何判断图中存环(正&负)】的更多相关文章

1.正环 用 SPFA不断的进行松弛操作,发现当前金额可以比本身大就更新,同时记录更新次数.如果更新次数超过n次,说明存在”正“环. 2.负环 这里先说明下负环.(求最短距离的时候) 在我们用SPFA求最短路径的时候,如果存在负环,在松弛操作的时候总会加入队列 因为最小距离会越来越小,同样这里如果经过一次次的转换,如果可以使本金增大,那么松弛操作也会无限进行下去,我们以n为界限,超过n就说明存在正环,也就说明可以使本金增大. 用spfa算法.经验证:当一个点重复进入队列n次以上,就存在负环. 题…
题目链接: https://cn.vjudge.net/problem/POJ-1860 Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be s…
Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可).问最少还需要建设多少条道路?   Input 测试输入包含若干测试用例.每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M:随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号.为简单起见,城镇从1到N编号.…
  利用_DFS_来判断无向图是否存在环的条件思路,我看一次_DFS_是否能访问到之前访问到的节点,如果能够访问到,就说明图存在环,那么关键问题就是判断是一次DFS?,追根到_DFS_算法的实现细节,发现我们设置_visited_数组时只有设置0和1两个状态,那么就可以改进以下之前的_DFS_算法,将_visited_各个状态表示成如下状态: 0: 没有被访问过 1: 刚刚访问,但是邻接点没有被全部访问完 2: 所有的邻接点都被访问完了,这里就可以判定_DFS_一定退出了   关键问题就解决了,…
New Reform time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Berland has n cities connected by m bidirectional roads. No road connects a city to itself, and each pair of cities is connected b…
题目:设计风景线 题意:给定一个无向图,图可能是非连通的,如果图中存在环,就输出YES,否则就输出图中最长链的长度. 分析:首先我们得考虑这是一个无向图,而且有可能是非连通的,那么就不能直接像求树那样来求最长链.对于本题,首先得 判断环,在这里我们就用并查集判环,因为并查集本身就是树型结构,如果要连接的两点的祖先都相同,那么就已经有环了, 这样直接输出YES,如果没有环,就应该输出最长链长度,那么我们每次可以对每一个没有访问过的节点进行两次bfs,就可以 求出,然后每次更新最大值即可. #inc…
没有找到原文出处,请参考一下链接: http://www.cnblogs.com/hiside/archive/2010/12/01/1893878.html http://topic.csdn.net/u/20071023/11/3edb81fc-37b2-4506-906e-44dc0fc521f2.html 一.无向图: 方法1: 如果存在回路,则必存在一个子图,是一个环路.环路中所有顶点的度>=2. n算法: 第一步:删除所有度<=1的顶点及相关的边,并将另外与这些边相关的其它顶点的度…
<题目链接> 题目大意: 给你 0~n-1 这n个点,然后给出m个关系 ,u,v代表u->v的单向边,问你这m个关系中是否产生冲突. 解题分析: 不难发现,题目就是叫我们判断图中是否存在环,存在环,则说明冲突.所以我们对图进行拓扑排序,如果该图中所有的点均能在拓扑排序中成为入度为0的点,则说明不含环(因为环中的点不可能入度为0). #include <cstdio> #include <cstring> #define rep(i,s,t) for(int i=s…
1.把图看成以起点为根节点的树 2.使用深度遍历算法遍历路径 3.遍历到节点为目标节点时,保存这条路径 find2PointsPath(sourceId, targetId) { const { nodesKV } = this.chart.getStore(); // 节点集合 let pathArr = []; // 保存找到的所有路径 const findPath = (sourceId, targetId, pathNodes = []) => { pathNodes = [...pat…
hdu3594 Cactus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 1131    Accepted Submission(s): 542 Problem Description 1. It is a Strongly Connected graph. 2. Each edge of the graph belongs to…