算法入门系列2:k近邻算法】的更多相关文章

数据挖掘算法学习笔记汇总 数据挖掘算法(一)–K近邻算法 (KNN) 数据挖掘算法(二)–决策树 数据挖掘算法(三)–logistic回归 算法简介 KNN算法的训练样本是多维特征空间向量,其中每个训练样本带有一个类别标签.算法的训练阶段只包含存储的特征向量和训练样本的标签. 在分类阶段,k是一个用户定义的常数.一个没有类别标签的向量(查询或测试点)将被归类为最接近该点的k个样本点中最频繁使用的一类. 一般情况下,将欧氏距离作为距离度量 d=(x1−x2)2+(y1−y2)2−−−−−−−−−−…
No.1. k-近邻算法的特点 No.2. 准备工作,导入类库,准备测试数据 No.3. 构建训练集 No.4. 简单查看一下训练数据集大概是什么样子,借助散点图 No.5. kNN算法的目的是,假如有新的数据加入,需要判断这个新的数据属于数据集中的哪一类 我们添加一个新的数据,重新绘制散点图 No.6. kNN的实现过程——计算x到训练数据集中每个点的距离 No.7. kNN的实现过程——使用argsort来获取距离x由近到远的点的索引组成的向量,进行保存 No.8. kNN的实现过程——指定…
目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类决策规则 3.2 维数诅咒 四.k近邻算法的拓展 4.1 限定半径k近邻算法 4.2 最近质心算法 五.k近邻算法流程 5.1 输入 5.2 输出 5.3 流程 六.k近邻算法优缺点 6.1 优点 6.2 缺点 七.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.…
数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 数据挖掘入门系列博客:https://www.cnblogs.com/xiaohuiduan/category/1661541.html 项目地址:GitHub 在上一篇博客中,我们使用了简单的OneR算法对Iris进行分类,在…
用官方的话来说,所谓K近邻算法(k-Nearest Neighbor,KNN),即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中.这是一个有监督的学习算法 例如下图,红色和蓝色代表已知的训练好的的数据,这个时候来一个示例,也就是图中的绿色圆块,这个绿色圆块属于哪一类呢? 如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,…
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性. 数据预备,这里使用random函数生成10*2的矩阵作为两列特征值,1个10个元素数组作为类别值 import numpy as npimport ma…
在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门算法. 参考内容如下:http://www.cnblogs.com/charlesblc/p/6193867.html 1.kNN算法又称为k近邻分类(k-nearest neighbor classification)算法. 最简单平凡的分类器也许是那种死记硬背式的分类器,记住所有的训练数据,对于…
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:http://weibo.com/1580904460/z1PosdcKj:2.神经网络:http://weibo.com/1580904460/yBmhfrOGl:3.编程艺术第28章:http://weibo.com/1580904460/z4ZGFiDcY.你看到,blog内…
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…
KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通常是不大于20的整数.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. 下面通过一个简单的例子说明一下:如下图,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将…