matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram of Oriented Gradient)方向梯度直方图,主要用来提取图像特征,最常用的是结合svm进行行人检测. 算法流程图如下(这篇论文上的): 下面我再结合自己的程序,表述一遍吧: 1.对原图像gamma校正,img=sqrt(img); 2.求图像竖直边缘,水平边缘,边缘强度,边缘斜率. 3.…
Histogram of Oriented Gridients(HOG) 方向梯度直方图 Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很常用的一种描述图像局部纹理的特征.这个特征名字起的也很直白,就是说先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图呢,就可以代表这块区域了,也就是作为特征,可以输入到分类器里面了.那么,接下来介绍一下HOG的具体原理和计算方法,以及一些引申. 1.分割图像 因为HOG是一…
Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很常用的一种描述图像局部纹理的特征.这个特征名字起的也很直白,就是说先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图呢,就可以代表这块区域了,也就是作为特征,可以输入到分类器里面了.那么,接下来介绍一下HOG的具体原理和计算方法,以及一些引申. 1.分割图像 因为HOG是一个局部特征,因此如果你对一大幅图片直接提取特征,是得不到好的效果的.原理很简单.从信息论角…
HOG(Histogram of Oriented Gradients),描述的是图像的局部特征,其命名也暗示了其计算方法,先计算图像中某一区域不同方向上梯度的值,然后累积计算频次,得到直方图,该直方图便可代表该区域了,也即从图像中抽取得到的特征向量,可以作为后续分类器的输入了. 注意,HOG 刻画的是图像的局部特征,对于一副高分辨率图像当然可以直接提取特征,效果并不理想.从信息论的角度说,一幅 640*480 的图像,约有 30 万个像素点,直接对原始图像做 HOG 特征提取的话,按照 360…
本文翻译自 SATYA MALLICK 的 "Histogram of Oriented Gradients" 原文链接: https://www.learnopencv.com/histogram-of-oriented-gradients/ 翻译:coneypo 在这篇文章中,我们将会学习 HOG (Histogram of Oriented Gradients,方向梯度直方图)特征描述子 的详细内容. 我们将学习 HOG 算法是如何实现的,以及在 OpenCv / MATLAB…
近期在学习视频检索领域的镜头切割方面的知识,发现经常使用的方法是直方图的方法,所以才专门有时间来学习下.查看到这两种直方图的时候,感觉有点接近,好像又不同,放在这做个比較.大部分还是百科的内容,只是对基本理解还是够了.OK,開始正文~ 首先,介绍下什么是直方图 在统计学中,直方图(英语:Histogram)是一种对数据分布情况的图形表示(数据分布如:如物体的色彩分布.物体边缘梯度模板,以及表示目标位置的概率分布.),是一种二维统计图表,它的两个坐标各自是统计样本和该样本相应的某个属性的度量.又称…
结合这周看的论文,我对这周研究的Histogram of oriented gradients(HOG)谈谈自己的理解: HOG descriptors 是应用在计算机视觉和图像处理领域,用于目标检測的特征描写叙述器.这项技术是用来计算局部图像梯度的方向信息的统计值.这样的方法跟边缘方向直方图(edge orientation histograms).尺度不变特征变换(scale-invariant feature transform descriptors)以及形状上下文方法( shape c…
wiki上的介绍 OpenCV的实现 cv::HOGDescriptor Struct Reference opencv cv::HOGDescriptor 的调用例子 HOGDescriptor hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9, 1, -1, HOGDescriptor::L2Hys, 0.2, gamma_corr, cv::HOGDescriptor::DEFAULT_NLEVELS); hog.setSVMDet…
1.介绍 HOG(Histogram of Oriented Gradient)是2005年CVPR会议上,法国国家计算机科学及自动控制研究所的Dalal等人提出的一种解决人体目标检测的图像描述子,该方法使用梯度方向直方图(Histogram of Oriented Gradients,简称HOG)特征来表达人体,提取人体的外形信息和运动信息,形成丰富的特征集. 2.生成过程 1)图像归一化 归一化图像的主要目的是提高检测器对光照的鲁棒性,因为实际的人体目标可能出现的各种不同的场合,检测器,必须…
梯度直方图特征(HOG) 是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. HOG特征是一种局部区域描述符,它通过计算局部区域上的梯度方向直方图来构成人体特征,能够很好地描述人体的边缘.它对光照变…