详细且透彻的分析PCA原理】的更多相关文章

前两天面试问到了PCA,感觉讲得不是很透彻,这里再次详细写一下. 首先定义如下变量的含义: X:Rn*m,n个样本m个属性,对于第i个样本xi:R1*m. W:Rm*k,k个正交的单位正交的列向量组成的矩阵,投影矩阵,把原来的m维降到k维.对于第i个维度wi:Rm*1. 投影后的样本矩阵X' = X×W:Rn*k,对于投影后的第i个样本xi' = xi×W:R1*k. 我们做PCA的目的是找出一个投影矩阵W(也就是k个单位向量)使得样本投影后的方差最大.其实理解了加粗的这句话,就已经对PCA有相…
首先,必须说明的是,这篇文章是完完全全复制百度文库当中的一篇文章.本人之前对PCA比较好奇,在看到这篇文章之后发现其对PCA的描述非常详细,因此迫不及待要跟大家分享一下,希望同样对PCA比较困惑的朋友能够从这篇文章中得到启发.虽然不知道作者是谁,但是还是非常感谢本文的作者.整篇文章从简单的例子引入这个PCA的算法,当中涉及最主要的知识就是矩阵论,因此如果有看不懂的朋友可以先去对矩阵论进行一些学习,这样对PCA的理解会有很大的帮助. 下面的描述格式方面可能有点出入,因此大家也可以直接通过下面的链接…
Kernel PCA 原理和演示 主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段.每一个主成分都是数据在某一个方向上的投影,在不同的方向上这些数据方差Variance的大小由其特征值(eigenvalue)决定.一般我们会选取最大的几个特征值所在的特征向量(eigenvector),这些方向上的信息丰富,一般认为包含了更多我们所感兴趣的信息.当然,这里面有较强的假设:(1)特征根的大小决定了我们感兴趣信息的多少.即…
主成分分析原理与实现   主成分分析是一种矩阵的压缩算法,在减少矩阵维数的同时尽可能的保留原矩阵的信息,简单来说就是将 \(n×m\)的矩阵转换成\(n×k\)的矩阵,仅保留矩阵中所存在的主要特性,从而可以大大节省空间和数据量.最近课上学到这个知识,感觉很有意思,就在网上找一些博客进行学习,发现网上关于这方面的介绍很多,但是感觉都不太全面,单靠某一个介绍还是无法理解,当然这可能也跟个人基础有关.所以我在这里根据自己的理解写一个总结性的帖子,与大家分享同时也方便自己复习.对于主成分分析,可以参照以…
在对数据进行预处理时,我们经常会遇到数据的维数非常之大,如果不进行相应的特征处理,那么算法的资源开销会很大,这在很多场景下是我们不能接受的.而对于数据的若干维度之间往往会存在较大的相关性,如果能将数据的维度之间进行相应的处理,使它们在保留最大数据信息的同时降低维度之间的相关性,就可以达到降维的效果.PCA(主成分分析)便是利用这样的概念将数据映射到新的维度空间中,选择最重要的几个成分作为新空间向量的基,这样在新的坐标空间中,数据既可以保留大部分的数据信息又可以达到降维的效果.在机器学习实战中对于…
超详细的Guava RateLimiter限流原理解析  mp.weixin.qq.com 点击上方“方志朋”,选择“置顶或者星标” 你的关注意义重大! 限流是保护高并发系统的三把利器之一,另外两个是缓存和降级.限流在很多场景中用来限制并发和请求量,比如说秒杀抢购,保护自身系统和下游系统不被巨型流量冲垮等.  限流的目的是通过对并发访问/请求进行限速或者一个时间窗口内的的请求进行限速来保护系统,一旦达到限制速率则可以拒绝服务或进行流量整形.  常用的限流方式和场景有:限制总并发数(比如数据库连接…
1.简介 在 Web 应用中,缓存是必不可少的组件.通常我们都会用 Redis 或 memcached 等缓存中间件,拦截大量奔向数据库的请求,减轻数据库压力.作为一个重要的组件,MyBatis 自然也在内部提供了相应的支持.通过在框架层面增加缓存功能,可减轻数据库的压力,同时又可以提升查询速度,可谓一举两得.MyBatis 缓存结构由一级缓存和二级缓存构成,这两级缓存均是使用 Cache 接口的实现类.因此,在接下里的章节中,我将首先会向大家介绍 Cache 几种实现类的源码,然后再分析一级和…
前言 本文继续讲解TOMCAT的请求原理分析,建议朋友们阅读本文时首先阅读过<TOMCAT源码分析——请求原理分析(上)>和<TOMCAT源码分析——请求原理分析(中)>.在<TOMCAT源码分析——请求原理分析(中)>一文我简单讲到了Pipeline,但并未完全展开,本文将从Pipeline开始讲解请求原理的剩余内容. 管道 在Tomcat中管道Pipeline是一个接口,定义了使得一组阀门Valve按照顺序执行的规范,Pipeline中定义的接口如下: getBas…
1.    相关背景 在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律.多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量.更重要的是在很多情形下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性.如果分别对每个指标进行分析,分析往往是孤立的,不能完全利用数据中的信息,因此盲目减少指标会损失很多有用的信息,从而产生错误的结论. 因此需要找到一种合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损…
1.从几何的角度去理解PCA降维 以平面坐标系为例,点的坐标是怎么来的? 图1                                                                             图2 如上图1所示,向量OA的坐标表示为(3,2),A点的横坐标实为向量OA与单位向量(1,0)的内积得到的(也就是向量OA在单位向量(1,0)所表示的的方向上的投影的长度,正负由向量OA与投影方向的夹角决定),纵坐标同理可得.而降维的过程从几何的角度去理解,实质就可…
库存ABC分类,简单的说就是抓大放小,是为了让我们抓住重点,用最大精力来管理最重要的物料,而对于不太重要的物料则可以用较少的精力进行管理.它和我们平常说的八二法则有异曲同工之妙. 既然要应用库存ABC方法,那么我们首先要决定,哪些物料是最重要的A类,哪些物料是一般重要的B类,哪些物料是最不重要的C类. 最简单的办法自然就是在物料主表中直接把ABC填上去,然后在日常业务中,我们随时都可以看到这是哪一类物料,从而决定了我们对其采取的管理方式(最重要的一个不能差,最不重要的,差一点半点可以容忍).为了…
文章目录 1. EnableAutoConfiguration 帮助我们做了什么 2. 配置参数类 – FreeMarkerProperties 3. 自动配置类 – FreeMarkerAutoConfiguration4. 扩展阅读 3.1. 核心注解 3.2. 注入 Bean 结合<Spring Boot 揭秘与实战 源码分析 - 开箱即用,内藏玄机>一文,我们再来深入的理解 Spring Boot 的工作原理. 在<Spring Boot 揭秘与实战 源码分析 - 开箱即用,内藏…
前言 在<TOMCAT源码分析——请求原理分析(上)>一文中已经介绍了关于Tomcat7.0处理请求前作的初始化和准备工作,请读者在阅读本文前确保掌握<TOMCAT源码分析——请求原理分析(上)>一文中的相关知识以及HTTP协议和TCP协议的一些内容.本文重点讲解Tomcat7.0在准备好接受请求后,请求过程的原理分析. 请求处理架构 在正式开始之前,我们先来看看图1中的Tomcat请求处理架构. 图1 Tomcat请求处理架构 图1列出了Tomcat请求处理架构中的主要组件,这里…
前言 谈起Tomcat的诞生,最早可以追溯到1995年.近20年来,Tomcat始终是使用最广泛的Web服务器,由于其使用Java语言开发,所以广为Java程序员所熟悉.很多人早期的J2EE项目,由程序员自己实现Jsp页面或者Servlet接受请求,后来借助Struts1.Struts2.Spring等中间件后,实际也是利用Filter或者Servlet处理请求,大家肯定要问了,这些Servlet处理的请求来自哪里?Tomcat作为Web服务器是怎样将HTTP请求交给Servlet的呢? 本文就…
转:http://www.cnblogs.com/tolimit/p/4223644.html wifidog源码分析 - wifidog原理 wifidog是一个用于配合认证服务器实现无线网页认证功能的程序,常见的情景就是使用于公共场合的无线wifi接入点,首先移动设备会连接公共wifi接入点,之后会弹出网页要求输入用户名密码,认证过后才能够连入外网.其主页是http://dev.wifidog.org/ 实现原理 其实wifidog原理很简单,主要是通过管控iptables,配合认证服务器进…
这里分析MapReduce原理并没用WordCount,目前没用过hadoop也没接触过大数据,感觉,只是感觉,在项目中,如果真的用到了MapReduce那待排序的肯定会更加实用. 先贴上源码 package examples; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.text.SimpleDateFormat; import java.util.Da…
转载请保留以下声明 作者:赵宗晟 出处:https://www.cnblogs.com/zhao-zongsheng/p/13067733.html 很多软件都要做性能分析和性能优化.很多语言都会有他的性能分析工具,例如如果优化C++的性能,我们可以用Visual Studio自带的性能探测器,或者使用Intel VTune Profiler.了解性能分析工具的原理有助于了解工具给出的数据与结果,也能帮助我们在遇到异常结果时排查哪里出了问题.这篇博客简单总结一下常见的性能分析工具原理. 性能分析…
动机 在机器学习领域中,我们常常会遇到维数很高的数据,有些数据的特征维度高达上百万维,很显然这样的数据是无法直接计算的,而且维度这么高,其中包含的信息一定有冗余,这时就需要进行降维,总的来说,我们降维的主要目的有如下几条: 在原始的高维空间中,包含有冗余信息以及噪音信息,在实际应用例如图像识别中造成了误差,降低了准确率:而通过降维,我们希望减少冗余信息所造成的误差,提高识别(或其他应用)的精度. 希望通过降维算法来寻找数据内部的本质结构特征. 通过降维来加速后续计算的速度 还有其他很多目的,如解…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
本文适合人群:对WebBench实现感兴趣的人 WebBench原理: Linux下使用的服务器压力测试工具,利用fork建立多个子进程,每个子进程在测试时间内不断发送请求报文,建立多个连接,然后由父进程统计:TCP连接成功次数,TCP连接失败次数,从服务器接收的数据量 WebBench适用于小,中型网站的服务器压力测试(对淘宝,百度这种大型网站不存在测压作用) WebBench支持的并行连接数:32768 进程号pid是short类型的,short类型最大为32768 所以WebBench最多…
原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在数据挖掘或者图像处理等领域经常会用到主成分分析,这样做的好处是使要分析的数据的维度降低了,但是数据的主要信息还能保留下来,并且,这些变换后的维两两不相关!至于为什么?那就接着往下看.在本文中,将会很详细的解答这些问题:PCA.SVD.特征值.奇异值.特征向量这些关键词是怎么联系到一起的?又是如何在一个矩阵上体现出来?它们如何决定着一个矩阵的性质?能不…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
  PCA的数学原理(转) 1 年前 PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个…
学习HashMap时,需要带着这几个问题去,会有很大的收获: 一.什么是哈希表 二.HashMap实现原理 三.为何HashMap的数组长度一定是2的次幂? 四.重写equals方法需同时重写hashCode方法 一.什么是哈希表 在了解哈希表之前,先了解下其他数据结构的操作执行性能,数据结构的物理存储结构只有两种方式:顺序存储结构和链式存储结构(栈,队列,数,图等) 数组:采用一段连续的存储单元来存储数据,对于指定下标的查找,时间复杂度为O(1);根据确定的值来查找,需要遍历数组,逐一进行比较…
------------------------------------------------------------------------------------------------------------------------------------------- 我们知道,bootloader是系统上电后最初加载运行的代码.它提供了处理器上电复位后最开始需要执行的初始化代码. 在PC机上引导程序一般由BIOS开始执行,然后读取硬盘中位于MBR(Main Boot Record,主…
一.行业现象 1.1 为什么要攻击? 常见的,一个是同行恶意竞争,一个是敲诈勒索. 无论是传统行业的线下门店,还是互联网行业的门户网站.APP产品,都存在着竞争关系,争相获得更多客源,究其目的,无非是为了赚钱. 1.2 被攻击有什么症状? 传统行业线下门店来讲,你开了一家饭店,正正经经做生意,生意也还不错.这两天经常有一大堆人进饭店,但是不点菜就占着位置不消费,或者动不动有乞丐在门口守着,有人在饭菜里面吃到虫子等等,这就是传统行业的恶意竞争. 互联网行业同理,你的门户网站或者APP产品一直正常运…
通过通视分析工具可根据在 3D 空间中相对于某表面或多面体要素类提供的障碍的位置,计算各线要素的第一个和最后一个折点之间的通视性.前一个折点定义为观测点,后一个折点为观测目标.沿着这些点之间的视线确定可见性,同时忽略有两个以上折点的线中的任何中间折点. 应用于观察点位置的默认偏移为 1 的表面为 2D 线插入观测点和目标点的高度值,以便其高于表面.而 3D 线要素的观察点和目标高程从要素几何单独获得.通过添加名为 OffsetA 和 OffsetB 的字段可将其他偏移应用到观测点和目标点.Off…
主成分分析PCA 降维的必要性 1.多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯. 2.高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%. 3.过多的变量会妨碍查找规律的建立. 4.仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内. 降维的目的: 1.减少预测变量的个数 2.确保这些变量是相互独立的 3.提供一个框架来解释结果 降维的方法有:主成…
NameNode中几个关键的数据结构 FSImage Namenode 会将HDFS的文件和目录元数据存储在一个叫fsimage的二进制文件中,每次保存fsimage之后到下次保存之间的所有hdfs操作,将会记录在 editlog文件中,当editlog达到一定的大小(bytes,由fs.checkpoint.size参数定义)或从上次保存过后一定时间段过后 (sec,由fs.checkpoint.period参数定义),namenode会重新将内存中对整个HDFS的目录树和文件元数据刷到 fs…
Data Mining 主成分分析PCA 降维的必要性 1.多重共线性--预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯. 2.高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%. 3.过多的变量会妨碍查找规律的建立. 4.仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内. 降维的目的: 1.减少预测变量的个数 2.确保这些变量是相互独立的 3.提供一个框架来解释…