『TensorFlow』读书笔记_ResNet_V2 对比之前的复杂版本,这次的torch实现其实简单了不少,不过这和上面的代码实现逻辑过于复杂也有关系. 一.PyTorch实现 # Author : hellcat # Time : 18-3-2 """ import os os.environ["CUDA_VISIBLE_DEVICES"]="-1" import numpy as np np.set_printoptions(th…
首更: 由于TensorFlow的奇怪形式,所以载入保存的是sess,把会话中当前激活的变量保存下来,所以必须保证(其他网络也要求这个)保存网络和载入网络的结构一致,且变量名称必须一致,这是caffe...好吧,caffe也没有这种python风格的设定... 废话少说,导入包: import numpy as np import tensorflow as tf 保存会话: W = tf.Variable([[1,2,3],[4,5,6]],dtype=tf.float32) b = tf.V…
关于『进击的Markdown』:第五弹 建议缩放90%食用 路漫漫其修远兮,吾将上下而求索.  我们要接受Mermaid的考验了呢  Markdown 语法真香(一如既往地安利) ( 进击吧!Markdown!) Markdown进阶系列向你开炮,请注意接收 我们就不废话了   又双叕要为大家带来 (正当时的) Markdown了呢~   注:编者用的是CSDN-Markdown编辑器(没错我还是没换, 这个编辑器真的适合小白使用, 再推荐一款"作业部落 Cmd Markdown",(…
关于『进击的Markdown』:第四弹 建议缩放90%食用 美人鱼(Mermaid)悄悄的来,又悄悄的走,挥一挥匕首,不留一个活口 又是漫漫画图路... 女士们先生们,大家好!  我们要接受Markdown和Mermaid的洗礼了呢  Markdown 语法真香(日常安利) ( 进击吧!Markdown!) Markdown进阶系列向你开炮,请注意接收 来吧!面对现实! 我们就不废话了   又双叒要为大家带来 (正当时的) Markdown了呢~   阿西,好多图啊 正文开始了 注:编者用的是C…
关于『进击的Markdown』:第三弹 建议缩放90%食用 我与神明画押,赌这弹markdown又双叒叕拖稿了 %%%Markdown!我的CSDN编辑器崩了呜呜呜 各路英雄豪杰,大家好!  我们要开始Markdown的学习了呢  Markdown 语法真香(疯狂安利) ( 进击吧!Markdown!) Markdown进阶系列向你开炮,请注意接收 时间就是性命,无端的空耗别人的时间,其实是无异于谋财害命的 那我们就不废话了   又叒要为大家带来 (正当时的) Markdown了呢~   不过像…
TensoFlow自动求导机制 『TensorFlow』第二弹_线性拟合&神经网络拟合_恰是故人归 下面做了三个简单尝试, 利用包含gradients.assign等tf函数直接构建图进行自动梯度下降 利用优化器计算出导数,再将导数应用到变量上 直接使用优化器不显式得到导数 更新参数必须使用assign,这也可能会涉及到控制依赖问题. # Author : Hellcat # Time : 2/20/2018 import tensorflow as tf tf.set_random_seed(…
『TensorFlow』网络操作API_上 『TensorFlow』网络操作API_中 『TensorFlow』网络操作API_下 之前也说过,tf 和 t 的层本质区别就是 tf 的是层函数,调用即可,t 的是类,需要初始化后再调用实例(实例都是callable的) 卷积 tensorflow.nn.conv2d import tensorflow as tf sess = tf.Session() input = tf.Variable(tf.random_normal([1,3,3,5])…
TF数据读取队列机制详解 一.TFR文件多线程队列读写操作 TFRecod文件写入操作 import tensorflow as tf def _int64_feature(value): # value必须是可迭代对象 # 非int的数据使用bytes取代int64即可 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) num_shards = 2 instance_perPshard = 2 for i…
一.基本队列: 队列有两个基本操作,对应在tf中就是enqueue&dequeue tf.FIFOQueue(2,'int32') import tensorflow as tf '''FIFO队列操作''' # 创建队列 # 队列有两个int32的元素 q = tf.FIFOQueue(2,'int32') # 初始化队列 init= q.enqueue_many(([0,10],)) # 出队 x = q.dequeue() y = x + 1 # 入队 q_inc = q.enqueue(…
添加记录节点 -> 汇总记录节点 -> run汇总节点 -> [书写器生成]书写入文件 [-> 刷新缓冲区] 可视化关键点: 注意, 1.with tf.name_scope('str'):上下文环境,每一个name_scope内的张量被统一到一个可展开的节点中,且可以嵌套,而带'name'属性的张量会成为可视化图中最小的节点. 2.超参数是张量,使用tf.summary.histogram(layer_name + '/biases', biases)记录,在网页的HISTOGR…