这里感谢百度文库,百度百科,维基百科,还有算法导论的作者以及他的小伙伴们...... 最短路是现实生活中很常见的一个问题,之前练习了很多BFS的题目,BFS可以暴力解决很多最短路的问题,但是他有一定的局限性,该算法只能用于无权重即权重为单位权重的图,那么下面我们会介绍五种用途更广泛的算法...... 最短路径的几个变体 单源最短路径问题:我们希望找到从源结点s到其它所有结点的最短路径. 单目的地最短路径问题:找到从每个结点v到目的u的最短路径,如果将图中每条边的方向翻转过来,我们就可以将这个问题…
说实在的,这算法很简单,很简单,很简单--因为它是贪心的,而且码量也小,常数比起SPFA也小. 主要思想 先初始化,dis[起点]=0,其它皆为无限大. 还要有一个bz数组,bz[i]表示i是否确定为最短路径 for i=1 to n { 在未确定最短路径的点中找出u使dis[u]最小 bz[u]=1; 更新与u相连的所有点 } 就这么简单. 实现讲解 其实也很好实现.可以用邻接表储存,也可以用邻接矩阵储存,虽然会慢一点.因为Dijkstra算法本就是对付稠密图的,不过我还是建议用邻接表,见SP…
关于模板什么的还有算法的具体介绍 戳我 这里我们只做所有最短路的具体分析. 那么同是求解最短路,这些算法到底有什么区别和联系: 对于BFS来说,他没有松弛操作,他的理论思想是从每一点做树形便利,那么时间复杂度绝对是在大型图中难以接受的,所以BFS题目设计很精巧,数据限制,更重要的是他可以处理一些条件很麻烦的联通情况,比如在途中,每步长相同求到达某一地的时间,那么我们要用最短路,就需要建图,但是借助BFS就不需要建图,这么麻烦的事情了. 对于其他最短路,核心思想是松弛,那么先说Floyd,其核心思…
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, s…
//以城市路为蓝本介绍算法 1381:城市路(Dijkstra) 时间限制: 1000 ms         内存限制: 65536 KB提交数: 4517     通过数: 1306 [题目描述] 罗老师被邀请参加一个舞会,是在城市n,而罗老师当前所处的城市为1,附近还有很多城市2~n-1,有些城市之间没有直接相连的路,有些城市之间有直接相连的路,这些路都是双向的,当然也可能有多条. 现在给出直接相邻城市的路长度,罗老师想知道从城市1到城市n,最短多少距离. [输入] 输入n, m,表示n个城…
为了不要让太多人被害,我还是说一下这种算法,它实际上很简单,但被人讲着讲着绕晕了. 主要思想 有人说,SPFA是Bellman-Ford的队列优化.这个算法我也懂了,但是还没试过.我不管是什么算法的优化,反正我看着不像. 它的思想很简单:BFS.有人说这只是类似的,并不是纯BFS.我不管这些,分这么严格干嘛呢! 从起点开始,枚举它节点的边,走所有与它相连的路径.如果能更新别的节点就更新,不能更新嘛,就直接将它从队列里删掉,不要它了,反正它没鬼用. 还有一点,要标记某节点是否已经在队列里,将一个节…
以杭电2544题目为例 最短路 Problem Description 在每年的校赛里,全部进入决赛的同学都会获得一件非常美丽的t-shirt. 可是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的.所以如今他们想要寻找最短的从商店到赛场的路线.你能够帮助他们吗?   Input 输入包含多组数据. 每组数据第一行是两个整数N.M(N<=100.M<=10000).N表示成都的大街上有几个路口,标号为1的路口是商店所在地.标号为N的路口是赛场所在地,M则表示在成都有几条路.…
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力不从心了,而Bellman - Ford算法可以解决这种问题. Bellman - Ford 算法可以处理路径权值为负数时的单源最短路径问题.设想可以从图中找到一个环路且这个环路中所有路径的权值之和为负.那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去.如果不处理这个负环路,程序就会永远运…
1.弗洛伊德算法(Floyd) 弗洛伊算法核心就是三重循环,M [ j ] [ k ] 表示从 j 到 k 的路径,而 i 表示当前 j 到 k 可以借助的点:红色部分表示,如果 j 到 i ,i 到 k 是通的,就将 j 到 k 的值更新为 M[j][i] + M[i][k] 和 M[j][k] 较短的一个. <<; ; i <= n; i++) { ; j <= n; j++) { ; k <= n; k++) { if (j!=k) { M[j][k] = min(M[…
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G运行Bellman—Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路.若存在负权回路,单源点最短路径问题无解:若不存在这样的回路,算法将给出从源点s到图G的任意顶点v的最短路径值d[v] Bellman—Ford算法流程 分为三个阶段:       (1)初始化:将除源点…
几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).       Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题. Floyd-Warshall算法的时间复杂度为O(N^3),空间复杂度为O(N^2). Floyd-Warshall的原理是动态规划:设Di,j,k为从i到j的只以(1..k)集合…
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可以求得一点到任意一点经过一条边的最短路,遍历两次可以求得一点到任意一点经过两条边的最短路...如 此反复,当遍历m次所有边后,则可以求得一点到任意一点经过m条边后的最短路(有点类似离散数学中邻接矩阵的连通性判定) POJ1556-The Doors 初学就先看POJ2240吧 题意:求从(0,5)到…
开始图论学习的第二部分:最短路径. 由于知识储备还不充足,暂时不使用邻接表的方法来计算. 最短路径主要分为两部分:多源最短路径和单源最短路径问题 多源最短路径: 介绍最简单的Floyd Warshall算法: 思路如下:把所有从顶点i到j可能经过的顶点一一枚举,不断更新从i到j的最小权值:d[i][j] = min{d[i][j],d[i][k]+d[k][j]},是一种动规的思想 局限性:不能处理有负权回路(负圈)的情况,而且一般是使用邻接矩阵的方式来实现. 优劣性:思路简单,核心代码简洁易懂…
    几大最短路径算法比较 转自:http://blog.csdn.net/v_july_v/article/details/6181485 几个最短路径算法的比较: Floyd        求多源.无负权边的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).        Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题. Floyd-Warshall算法的时间复杂度为O…
这一篇博客以一些OJ上的题目为载体.整理一下最短路径算法.会陆续的更新... 一.多源最短路算法--floyd算法 floyd算法主要用于求随意两点间的最短路径.也成最短最短路径问题. 核心代码: /** *floyd算法 */ void floyd() { int i, j, k; for (k = 1; k <= n; ++k) {//遍历全部的中间点 for (i = 1; i <= n; ++i) {//遍历全部的起点 for (j = 1; j <= n; ++j) {//遍历…
几大最短路径算法比较 几个最短路径算法的比较:Floyd        求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).       Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题. Floyd-Warshall算法的时间复杂度为O(N^3),空间复杂度为O(N^2). Floyd-Warshall的原理是动态规划:设Di,j…
SPFA(Shortest Path Faster Algorithm)算法,是西南交通大学段凡丁于 1994 年发表的,其在 Bellman-ford 算法的基础上加上一个队列优化,减少了冗余的松弛操作,是一种高效的最短路算法. 算法过程 设立一个队列用来保存待优化的顶点,优化时每次取出队首顶点 u,并且用 u 点当前的最短路径估计值 dist[u] 对与 u 点邻接的顶点 v 进行松弛操作,如果 v 点的最短路径估计值 dist[v] 可以更小,且 v 点不在当前的队列中,就将 v 点放入队…
2.Dijkstra算法O (N2) 用来计算从一个点到其他所有点的最短路径的算法,是一种单源最短路径算法.也就是说,只能计算起点只有一个的情况. Dijkstra的时间复杂度是O (N2),它不能处理存在负边权的情况. 算法描述:        设起点为s,dis[v]表示从s到v的最短路径,pre[v]为v的前驱节点,用来输出路径.        a)初始化:dis[v]=∞(v≠s); dis[s]=0; pre[s]=0;        b)For (i = 1; i <= n ; i+…
本来我是想把这两个算法分开写描述的,但是SPFA其实就是Dijkstra的稀疏图优化,所以其实代码差不多,所以就放在一起写了. 因为SPFA是Dijkstra的优化,所以我想来讲讲Dijkstra. 什么是Dijkstra Dijkstra是一种求单源最短路的基础算法,时间复杂度在不加堆优化的情况下是o(n^2)的,加了堆优化就能简化到o(nlogn),而且算法稳定性很强(从这点上来说比SPFA好多了,具体怎么好下面再讲),基础思路如下: 首先,把所有点到源的距离设为最大,然后把源加入队列,接着…
最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkstra 算法.Bellman-Ford 算法和Floyd 算法,另外还有启发式算法 A*. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 最短路径问题 最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 最短路径问题有几种形式…
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: Bellman-Ford 单源最短路径算法:时间复杂度为 O(VE),适用于带负权值情况: 对于全源最短路径问题(All-Pairs Shortest Paths Problem),可以认为是单源最短路径问题的推广,即分别以每个顶点作为源顶点并求其至其它顶点的最短距离.例如,对每个顶点应用 Bel…
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Problem),其中图 G 允许存在权值为负的边,但不存在权值为负的回路.Floyd-Warshall 算法的运行时间为 Θ(V3). Floyd-Warshall 算法由 Robert Floyd 于 1962 年提出,但其实质上与 Bernad Roy 于 1959 年和 Stephen Warshal…
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Lester Ford 分别发表于 1958 年和 1956 年,而实际上 Edward F. Moore 也在 1957 年发布了相同的算法,因此,此算法也常被称为 Bellman-Ford-Moore 算法. Bellman-Ford 算法和 Dijkstra 算法同为解决单源最短路径的算法.对于带权有向…
Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 7990 Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and pe…
COGS图论相关算法 最小生成树 Kruskal+ufs int ufs(int x) { return f[x] == x ? x : f[x] = ufs(f[x]); } int Kruskal() { int w = 0; for(int i=0; i<n; i++) f[i] = i; sort(e, e+n); for(int i=0; i<n; i++) { int x = ufs(e[i].u), y = ufs(e[i].v); if(x != y) { f[x] = y;…
什么??你问我为什么不在一篇文章写完所有方法?? Hmm…其实我是想的,但是博皮的加载速度再带上文章超长图片超多的话… 可能这辈子都打不开了吧… 上接https://www.cnblogs.com/Uninstalllingyi/p/10417446.html 福特算法(Bellman-Ford) 适用范围及时间复杂度 单源最短路径算法,可处理负边权,但,无法处理负回路的情况.时间复杂度O(NE) N:顶点数,E:边数 核心思想 松弛计算.什么是松弛计算?你戳… ………
前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra算法来求最短路径,并且算法的思想很简单--贪心算法:每次确定最短路径的一个点然后维护(更新)这个点周围点的距离加入预选队列,等待下一次的抛出确定.但是虽然思想很简单,实现起来是非常复杂的,我们需要邻接矩阵(表)储存长度,需要优先队列(或者每次都比较)维护一个预选点的集合.还要用一个boolean数组…
昨天: 图论-概念与记录图的方法 以上是昨天的Blog,有需要者请先阅读完以上再阅读今天的Blog. 可能今天的有点乱,好好理理,认真看完相信你会懂得 分割线 第二天 引子:昨天我们简单讲了讲图的概念与记录图的方法,那么大家有一定的底子了,我们就开始初步接触图论算法了! 我们只讲Dijkstra和Floyd,因为其实在比赛中会这两个算法就很好了. 今天我们要讲的是:最短路径问题 Top1:最短路的概念 相信大家都知道有一款Made in China的导航软件--百度导航.那么他们是怎么为我们导航…
Dijkstra算法: Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等.注意该算法要求图中不存在负权边. 问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径.(单源最短路径) 算法的基本思想是:每…
前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知识准备: 1.表示图的数据结构 用于存储图的数据结构有多种,本算法中笔者使用的是邻接矩阵.  图的邻接矩阵存储方式是用两个数组来表示图.一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息. 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 从上面可以看出,无向图的边…