poj1284】的更多相关文章

题目描述: 题意: 定义原根:对于一个整数x,0<x<p,是一个mod p下的原根,当且仅当集合{ (xi mod p) | 1 <= i <= p-1 } 等于{ 1, ..., p-1 }.给定p,询问有多少个满足定义的原根. 这里有一个定理:如果p有原根,则它恰有φ(φ(p))个不同的原根 证明不懂就算了,我也不懂啊TAT 证明如下 题目中说m是奇素数,所以φ(p)=p-1,故ans=φ(p-1). 代码如下: #include<cstdio> #include&…
题目链接: https://cn.vjudge.net/problem/POJ-1284 题目大意: 就是给出一个奇素数,求出他的原根的个数. 解题思路: 由于是m是奇素数,m的欧拉函数值为m - 1,所以直接求出ϕ(m - 1)即可 #include<iostream> #include<cmath> using namespace std; typedef long long ll; int euler_phi(int n)//求单个 { int m = (int)sqrt(n…
题目链接:https://vjudge.net/problem/POJ-1284 题意:给定奇素数p,求x的个数,x为满足{(xi mod p)|1<=i<=p-1}={1,2,...,p-1}. 思路:题目的实质就是问p有多少原根. 下面是百度对原根的解释: 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数) 假设一个数g是P的原根,那么g^i mod P的结果两两不同,且有 1<g<P, 0<i<P,归根到底就…
题目:http://poj.org/problem?id=1284 题意:就是求一个奇素数有多少个原根 分析: 使得方程a^x=1(mod m)成立的最小正整数x是φ(m),则称a是m的一个原根 然后有这样的定理: 1.所有奇素数都有原根 2.如果一个数n有原根,那么原根个数为φ(φ(n)) 由性质2就可知道,对于此题的奇素数n,结果就是φ(n-1)…
何为原根?由费马小定理可知 如果a于p互质 则有a^(p-1)≡1(mod p)对于任意的a是不是一定要到p-1次幂才会出现上述情况呢?显然不是,当第一次出现a^k≡1(mod p)时, 记为ep(a)=k 当k=(p-1)时,称a是p的原根每个素数恰好有f(p-1)个原根(f(x)为欧拉函数) 定理:对于奇素数m, 原根个数为phi(phi(m)), 由于phi(m)=m-1, 所以为phi(m-1).某大牛的证明: {xi%p | 1 <= i <= p - 1} = {1,2,...,p…
一个欧拉函数的应用,当时也没有太搞清,这里直接用的当时的模板 #include<iostream> #include<cstdlib> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; ]; int main() { int i , j ; ; i <= ; i ++ ) phi[i]=; phi…
Primitive Roots Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4505   Accepted: 2652 Description We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is eq…
Primitive Roots Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4775   Accepted: 2827 Description We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is eq…
题目传送门 Primitive Roots Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5434   Accepted: 3072 Description We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 }…
[题目大意] 给你一个素数n,求n的原根个数. [题解] 关于原根有一个定理: 定理:如果模有原根,那么它一共有个原根. 所以这题就是求phi[phi[n]] 很简单吧...(如果知道这个定理的话) /************** POJ 1284 by chty 2016.11.10 **************/ #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring>…