探究Presto SQL引擎(2)-浅析Join】的更多相关文章

​ vivo 互联网服务器团队- Shuai Guangying 探究Presto SQL引擎 系列:第1篇<探究Presto SQL引擎(1)-巧用Antlr>介绍了Antlr的基本用法以及如何使用Antlr4实现解析SQL查询CSV数据,在第2篇<探究Presto SQL引擎(2)-浅析Join>结合了Join的原理,以及Join的原理,在Presto中的思路. 本文是系列第3篇,介绍基于 Antlr 实现where条件的解析原理,并对比了直接解析与代码生成实现两种实现思路的性…
作者:vivo互联网用户运营开发团队 -  Shuai Guangying 本篇文章介绍了统计计数的基本原理以及Presto的实现思路,精确统计和近似统计的细节及各种优缺点,并给出了统计计数在具体业务使用的建议. 系列文章: 探究Presto SQL引擎(1)-巧用Antlr 探究Presto SQL引擎(2)-浅析Join 探究Presto SQL引擎(3)-代码生成 一.背景 学习Hadoop时接触的第一个样例就是word count,即统计文本中词的数量.各种BI.营销产品中不可或缺的模块…
一.背景 自2014年大数据首次写入政府工作报告,大数据已经发展7年.大数据的类型也从交易数据延伸到交互数据与传感数据.数据规模也到达了PB级别. 大数据的规模大到对数据的获取.存储.管理.分析超出了传统数据库软件工具能力范围.在这个背景下,各种大数据相关工具相继出现,用于应对各种业务场景需求.从Hadoop生态的Hive, Spark, Presto, Kylin, Druid到非Hadoop生态的ClickHouse, Elasticsearch,不一而足... 这些大数据处理工具特性不同,…
Presto 是由 Facebook 开源的大数据分布式 SQL 查询引擎,适用于交互式分析查询,可支持众多的数据源,包括 HDFS,RDBMS,KAFKA 等,而且提供了非常友好的接口开发数据源连接器. 介绍 Presto是一个运行在多台服务器上的分布式系统. 完整安装包括一个coordinator和多个worker. 由客户端提交查询,从Presto命令行CLI提交到coordinator. coordinator进行解析,分析并执行查询计划,然后分发处理队列到worker. 完全基于内存的…
   MS SQL统计信息浅析上篇对SQL SERVER 数据库统计信息做了一个整体的介绍,随着我对数据库统计信息的不断认识.理解,于是有了MS SQL统计信息浅析下篇. 下面是我对SQL Server统计信息的一些探讨或认识,如有不对的地方,希望大家能够指正. 触发统计信息更新条件疑问     关于这个触发统计信息更新的条件.因为我在很多资料上看到过,例如Microsoft  SQL Server 企业级平台管理实践. 我自己上篇也是这样解释的.    1:普通表上,触发数据库自动更新统计信息…
导读 本文涵盖了6个开源领导者:Hive.Impala.Spark SQL.Drill.HAWQ 以及Presto,还加上Calcite.Kylin.Phoenix.Tajo 和Trafodion.以及2个商业化选择Oracle Big Data SQL 和IBM Big SQL,IBM 尚未将后者更名为“Watson SQL”. 背景介绍 使用SQL 引擎一词是有点随意的.例如Hive 不是一个引擎,它的框架使用MapReduce.TeZ 或者Spark 引擎去执行查询,而且它并不运行SQL,…
本文涵盖了6个开源领导者:Hive.Impala.Spark SQL.Drill.HAWQ 以及Presto,还加上Calcite.Kylin.Phoenix.Tajo 和Trafodion.以及2个商业化选择Oracle Big Data SQL 和IBM Big SQL,IBM 尚未将后者更名为“Watson SQL”. (有读者问:Druid 呢?我的回答是:检查后,我同意Druid 属于这一类别.) 使用SQL 引擎一词是有点随意的.例如Hive 不是一个引擎,它的框架使用MapRedu…
背景 随着大数据时代的到来,Hadoop在过去几年以接近统治性的方式包揽的ETL和数据分析查询的工作,大家也无意间的想往大数据方向靠拢,即使每天数据也就几十.几百M也要放到Hadoop上作分析,只会适得其反,但是当面对真正的Big Data的时候,Hadoop就会暴露出它对于数据分析查询支持的弱点.甚至出现<MapReduce: 一个巨大的倒退>此类极端的吐槽,这也怪不得Hadoop,毕竟它的设计就是为了批处理,使用用MR的编程模型来实现SQL查询,性能肯定不如意.所以通常我也只是把Hive当…
本文来自:http://blog.csdn.net/yu616568/article/details/52431835 如有侵权 可立即删除 背景 随着大数据时代的到来,Hadoop在过去几年以接近统治性的方式包揽的ETL和数据分析查询的工作,大家也无意间的想往大数据方向靠拢,即使每天数据也就几十.几百M也要放到Hadoop上作分析,只会适得其反,但是当面对真正的Big Data的时候,Hadoop就会暴露出它对于数据分析查询支持的弱点.甚至出现<MapReduce: 一个巨大的倒退>此类极端…
根据 O’Reilly 2016年数据科学薪资调查显示,SQL 是数据科学领域使用最广泛的语言.大部分项目都需要一些SQL 操作,甚至有一些只需要SQL.本文就带你来了解这些主流的开源SQL引擎!背景介绍 本文涵盖了6个开源领导者:Hive.Impala.Spark SQL.Drill.HAWQ 以及Presto,还加上Calcite.Kylin.Phoenix.Tajo 和Trafodion.以及2个商业化选择Oracle Big Data SQL 和IBM Big SQL,IBM 尚未将后者…