零基础入门数据挖掘 - 二手车交易价格预测 赛题理解 比赛要求参赛选手根据给定的数据集,建立模型,二手汽车的交易价格. 赛题以预测二手车的交易价格为任务,数据集报名后可见并可下载,该数据来自某交易平台的二手车交易记录,总数据量超过40w,包含31列变量信息,其中15列为匿名变量.为了保证比赛的公平性,将会从中抽取15万条作为训练集,5万条作为测试集A,5万条作为测试集B,同时会对name.model.brand和regionCode等信息进行脱敏. 比赛地址:https://tianchi.al…
原文地址: https://blog.csdn.net/linxid/article/details/81189154 -------------------------------------------------------------------------------------------------- 一.Python实现自动贝叶斯调整超参数 [导读]机器学习中,调参是一项繁琐但至关重要的任务,因为它很大程度上影响了算法的性能.手动调参十分耗时,网格和随机搜索不需要人力,但需要很长…
作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 机器学习实战系列:https://www.showmeai.tech/tutorials/41 本文地址:https://www.showmeai.tech/article-detail/300 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 一份来自『RESEARCH AND MARKETS』的二手车报告预计,从 2022 年到…
1. 机器学习系列入门系列[七]:基于英雄联盟数据集的LightGBM的分类预测 1.1 LightGBM原理简介 LightGBM是2017年由微软推出的可扩展机器学习系统,是微软旗下DMKT的一个开源项目,它是一款基于GBDT(梯度提升决策树)算法的分布式梯度提升框架,为了满足缩短模型计算时间的需求,LightGBM的设计思路主要集中在减小数据对内存与计算性能的使用,以及减少多机器并行计算时的通讯代价. LightGBM可以看作是XGBoost的升级豪华版,在获得与XGBoost近似精度的同…
机器学习算法(二): 基于鸢尾花数据集的朴素贝叶斯(Naive Bayes)预测分类 项目链接参考:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc 1. 实验室介绍 1.1 实验环境 1. python3.7 2. numpy >= '1.16.4' 3. sklearn >= '0.23.1' 1.2 朴素贝叶斯的介绍 朴素贝叶斯算法(Naive Bayes, NB) 是应用最为广泛的分类算法之一.它是基于贝叶斯定义…
来源引用:https://blog.csdn.net/han_xiaoyang/article/details/50629608 1.引言 贝叶斯是经典的机器学习算法,朴素贝叶斯经常运用于机器学习的案例.比如说 文本分类/垃圾邮件的分类/情感分析:在文本分类中,贝斯依旧占有一席之地,因为文本数据中,分布独立这个假设基本上成立的. 推荐系统:朴素贝叶斯和协同过滤一起使用,经常出现在推荐系统.以后有机会会好好写一篇关于推荐系统的文章. 值得提醒的,以下部分点是要知道的: 数据要服从正态分布, 使用拉…
目录 1.理解朴素贝叶斯 1)基本概念 2)朴素贝叶斯算法 2.朴素贝斯分类应用 1)收集数据 2)探索和准备数据 3)训练模型 4)评估模型性能 5)提升模型性能 1.理解朴素贝叶斯 1)基本概念 依据概率原则进行分类.如天气预测概率. 朴素贝叶斯(Naive Bayes, NB)适合场景:为估计一个结果的概率,从众多属性中提取的信息应该被同时考虑. 很多算法忽略了弱影响的特征(若有大量弱影响的特征,它们组合在一起的影响可能会很大),但NB算法利用了所有可以获得的证据来修正预测. 贝叶斯方法的…
目录 先验概率与后验概率 条件概率公式.全概率公式.贝叶斯公式 什么是朴素贝叶斯(Naive Bayes) 拉普拉斯平滑(Laplace Smoothing) 应用:遇到连续变量怎么办?(多项式分布,高斯分布) Python代码(sklearn库) 先验概率与后验概率 引例 想象有 A.B.C 三个不透明的碗倒扣在桌面上,已知其中有(且仅有)一个瓷碗下面盖住一个鸡蛋.此时请问,鸡蛋在 A 碗下面的概率是多少?答曰 1/3. 现在发生一件事:有人揭开了 C 碗,发现 C 碗下面没有蛋.此时再问:鸡…
Chapter1_housing_price_predict .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .ta…
人工智能大数据,公开的海量数据集下载,ImageNet数据集下载,数据挖掘机器学习数据集下载 ImageNet挑战赛中超越人类的计算机视觉系统微软亚洲研究院视觉计算组基于深度卷积神经网络(CNN)的计算机视觉系统,在ImageNet 1000挑战中首次超越了人类进行对象识别分类的能力.他们的系统在ImageNet 2012分类数据集中的错误率已降低至4.94%.这个数据集包含约120万张训练图像.5万张验证图像和10万张测试图像,分为1000个不同的类别.该研究团队由微软亚洲研究院研究员孙剑.何…