https://stackoverflow.com/questions/41032551/how-to-compute-receiving-operating-characteristic-roc-and-auc-in-keras https://github.com/keras-team/keras/issues/3230#issuecomment-319208366 http://www.luozhipeng.com/?p=1225 http://scikit-learn.org/stabl…
参考资料:https://zhuanlan.zhihu.com/p/46714763 ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到).其实,理解它并不是非常难,但是好多朋友都遇到了一个相同的问题,那就是:每次看书的时候都很明白,但回过头就忘了,经常容易将概念弄混.还有的朋友面试之前背下来了,但是一紧张大脑一片空白全忘了,导致回答的很差. 我在之前的面试过程中也遇到过类似的问题,我的面试经验是:一般笔试题遇到选择题基本都会考这个率,那个率,或者给一个场景让…
CIKM Competition数据挖掘竞赛夺冠算法陈运文 背景 CIKM Cup(或者称为CIKM Competition)是ACM CIKM举办的国际数据挖掘竞赛的名称.CIKM全称是International Conference on Information and Knowledge Management,属于信息检索和数据挖掘领域的国际著名学术会议,由ACM SIGIR分会(ACM Special Interest Group on Information Retrieval)主办.…
文章目录 1.背景 2.ROC曲线 2.1 ROC名称溯源(选看) 2.2 ROC曲线的绘制 3.AUC(Area Under ROC Curve) 3.1 AUC来历 3.2 AUC几何意义 3.3 AUC计算 3.4 理解AUC的意义 3.4.1 从Mann-Whitney U test角度理解 3.4.2 从AUC计算公式角度理解 3.4.3 一句话介绍AUC 3.5 为什么用AUC 3.6 AUC的一般判断标准 1.背景 很多学习器是为测试样本产生一个实值或概率预测(比如比较简单的逻辑回…
Spark机器学习 Day2 快速理解机器学习 有两个问题: 机器学习到底是什么. 大数据机器学习到底是什么. 机器学习到底是什么 人正常思维的过程是根据历史经验得出一定的规律,然后在当前情况下根据这种规律来预测当前的情况下该怎么做,这种过程就是一个机器学习的过程. 我们可以发现,这个过程里有规律和当前的情况.规律就是模型,当前情况就是当前的数据,会根据当前的情况会根据不同的规律来得出不同的结论来驱动下一个行为,就是数据驱动的一种决策方式,这和我们编程用的指令驱动方式是完全不同的. 机器学习是根…
动态规划(Dynamic Programming)算法与LC实例的理解 希望通过写下来自己学习历程的方式帮助自己加深对知识的理解,也帮助其他人更好地学习,少走弯路.也欢迎大家来给我的Github的Leetcode算法项目点star呀~~ 动态规划(Dynamic Programming)算法与LC实例的理解 DP是什么 基本定义 帮助理解的经典问题:硬币问题 第二个经典问题:斐波那契数列 为什么要用DP 重叠子问题 最优子结构 怎么用DP 规范化DP的思路:状态定义与状态转移方程 Leetcod…
1.什么是性能度量? 我们都知道机器学习要建模,但是对于模型性能的好坏(即模型的泛化能力),我们并不知道是怎样的,很可能这个模型就是一个差的模型,泛化能力弱,对测试集不能很好的预测或分类.那么如何知道这个模型是好是坏呢?我们必须有个评判的标准.为了了解模型的泛化能力,我们需要用某个指标来衡量,这就是性能度量的意义.有了一个指标,我们就可以对比不同模型了,从而知道哪个模型相对好,那个模型相对差,并通过这个指标来进一步调参逐步优化我们的模型. 当然,对于分类和回归两类监督学习,分别有各自的评判标准.…
在IJCAI 于2015年举办的竞赛:Repeat Buyers Prediction Competition 中, 很多参赛队伍在最终的Slides展示中都表示使用了 AUC 作为评估指标:     那么,AUC是什么呢? AUC是一个机器学习性能度量指标,只能用于二分类模型的评价.(拓展二分类模型的其他评价指标:logloss.accuracy.precision)   对于二分类问题,可将样例根据其真实类别与学习器预测类别的组合划分为真正例(true positive).假正例(false…
评估指标 Evaluation metrics 机器学习性能评估指标 选择合适的指标 分类与回归的不同性能指标 分类的指标(准确率.精确率.召回率和 F 分数) 回归的指标(平均绝对误差和均方误差) 混淆矩阵(confusion matricess) 一.选择合适的指标 评估模型是否得到改善,总体表现如何 在构建机器学习模型时,我们首先要选择性能指标,然后测试模型的表现如何.相关的指标有多个,具体取决于我们要尝试解决的问题. 此外,在测试模型时,也务必要将数据集分解为训练数据和测试数据.如果不区…
IOU 在目标检测算法中,交并比Intersection-over-Union,IoU是一个流行的评测方式,是指产生的候选框candidate bound与原标记框ground truth bound的交叠率,即它们的交集与并集的比值.最理想情况是完全重叠,即比值为1.一般来说,这个score > 0.5 就可以被认为一个不错的结果了. 脚本实现: def compute_iou(rec1, rec2): """ computing IoU: param rec1: (…